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Abstract 
 
There are a lot of problems in engineering which are connected with the necessity not to neglect the influence of uncertainties in 

parameters (these are for example seismic vibrations, wind loaded structures and imperfection sensitive structures). Fuzzy numbers and 
possibility theory are used for problems where uncertainties in definition of input data do not allow for a treatment by means of 
probabilistic methods. Starting from scarce/uncertain body of information, fuzzy numbers are used to define possibility distributions as 
well as upper and lower bounds for a wide class of probability distributions compatible with available data. It is shown that fuzzy 
numbers give upper and lower bounds (with respect to probability) for value of the reliability of structures. Calculations were done using 
a special algorithm based on interval arithmetic. 
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1. Introduction 
 
All parameters in mechanical systems are known with some 

accuracy [1]. When we have precise information about quality of 
them a deterministic analysis should be applied. Alternatively, 
when we have random characteristic of parameters, probabilistic 
methods should be applied. The situation is different if we do not 
possess a sufficient probabilistic characteristic information. Often 
only a very limited knowledge is available and appropriate 
mathematical tools are needed. When only extreme values of the 
parameters are known. In this circumstance one should apply the 
new analysis: convex modelling [2,8]. 

 
2. Relation between random sets and fuzzy sets 

 
Let us consider the situation when during an experiment we 

can measure only upper and lower bounds of some physical 
quantity x. After the experiment we obtain a family of 
measurements 
 

{ }nA,...,A1=Ξ  (1) 
 
where 
 

[ ] [ ] { }+−+− ≤≤=== iiiiii xxxxx,xxA :    for i=1,...,n (2) 
 
We assume that probability of getting each measurement [ ]ix  is 
the same and equal to 1/n i.e. 
 

[ ]( )
n

xm i
1=  (3) 

 
The pair ( )m,Ξ  is called a random set [4]. Ξ  is called the 
support of the random set and m is a basic probability assignment. 
Each set Ξ∈A  contains the possible value of variable x and 
m(A) can be viewed as the probability that A is the actual range of 
x. 

When measurements are intervals then theory of fuzzy sets 
can be applied [4,6]. 
 
Definition 
Given a random set ( )m,Ξ , a believe function Bel can be defined 
as the following set function [4] 
 

( ) ( )∑ ⊂
=

SA
AmSBel  (4) 

 
Plausibility function can be defined by 
 

( ) ( )∑ ∅≠∩
=

SA
AmSPl  (5) 

 
It can be shown that 
 

( ) ( )APlABel −=1  (6) 
 
When Ξ  contains only singletons then Bel=Pl is a probability 
measure (with finite support) [4]. 
When Ξ  is a nested family i.e. 
 

nA...AA ⊂⊂⊂ 21  (7) 
 
then ( )m,Ξ  is called a consonant random set [4]. 



A fuzzy set can be defined from any random set as follows [4,6] 
 

( ) ( ) { }( )xPlAmx
Ax

==µ ∑ ∈
 (8) 

 
When Ξ  is nested, µ  is normalised, i.e. exists such x that 

( ) 1=µ x . Moreover µ  is equivalent to the unique consonant 
random set defined by [4] 
 

{ }pF,...,F1=Ξ  (9) 

( ) 1+α−α= iiiFm  (10) 
 
where 
 

( ){ }ii xxF α≥µ= :  (11) 

p... α>>α>=α 21 1    and   01 =α +p  (12) 
 
3. Extension principle 
 

A finite support random relation is a random set ( )1212 m,Ξ  
on 21 XX ×  [4]. A random relation permits to pair ( )21 x,x  of 
variables whose dependency can be pictured by relation 

2112 XXA ×⊂  (where Ξ∈12A , ( ) 1221 Ax,x ∈ ) with 
probability ( )Am12 . 

Let f be a mapping XXX →× 21 . Now a random set 
( )m,Ξ  can be defined in the space X  in the following way: 
 

( )12AfA =    where  1212 Ξ∈Ξ∈ A,A  (13) 
( ) ( )1212 AmAm =    where   ( )12AfA =  (14) 

 
In both spaces X  and 21 XX ×  we can defined fuzzy sets 
 

( ) ( )( )∑ ∈
=µ

1221 12122112 Ax,x
Amx,x  (15) 

( ) ( )∑ ∈
=µ

Ax
Amx  (16) 

 
It can be shown [4] that if the random relation ( )1212 m,Ξ  is 
consonant then the following relation holds: 
 

( ) ( ) ( ){ }212112  : x,xfxx,xsupx =µ=µ  (17) 

if ( ) ∅=− xf 1 , then ( ) 0=µ x  (18) 
 
this is so called extension principle. 
A particular case of random relation is when  
 

211222111212   AAAA,AA ×=Ξ∈Ξ∈∃Ξ∈∀  (19) 
 
i.e. all relations are Cartesian products of subset of 1X  and 2X  
respectively. Such random relation will be called ‘random 
Cartesian products’ [4]. 
Consonant random Cartesian products correspond to 
decomposable fuzzy relations. 12Ξ  is the set of level-cuts of the 
equivalent fuzzy relation 12F  on 21 XX × ; these level-cuts are 
Cartesian products if and only if exist fuzzy sets 21 F,F  on 1X  
and 2X  such that 

( ) ( ) ( ){ }22112112 x,xminx,x µµ=µ  (20) 
 
where 
 

( ) ( )111 111 Amx
Ax∑ ∈

=µ  (21) 

( ) ( )222 212 Amx
Ax∑ ∈

=µ  (22) 

( ) ( )( )∑ =×=
1211 121211 AAAojPr AmAm  (23) 

( ) ( )( )∑ =×=
2212 121222 AAAojPr AmAm  (24) 

 
where ( ) 1211 AAAojPr =×  and ( ) 2212 AAAojPr =× . 
It can be shown that 
 

( ) ( )21122211 x,xx sup Xx µ=µ ∈  (25) 

( ) ( )21121122 x,xx sup Xx µ=µ ∈  (26) 

 
For random Cartesian products extension principle can be written 
in the following way 
 

( ) ( ) ( ){ } ( ){ }212211  : x,xfxx,xminsupx =µµ=µ  (27) 
 
Upper probability of same event A can be calculated [5] 
 

( ) ( )xAPl sup Ax µ= ∈  (28) 

 
4. Extension principle for non-consonant random sets 
 

If the random sets ( )1212 m,Ξ  aren’t consonant then relation 
(27) is not satisfy. In this case family 12Ξ  can be divide into 

parts i
12Ξ . In each part condition (7) holds. For each family i

12Ξ  
fuzzy membership function can be defined 
 

( ) ( )∑ ∈=µ
12 121212 A

i Amxx  (29) 

 
where iA 1212 Ξ∈ , ( )21 x,x=x  i=1,...,p. 
Upper probability of some event 21 XXA ×⊂  can be calculated 
using the following formula 
 

( ) ( ) ( ) ( )∑∑ µ=µ==
i

i

i

i x,xx,xPlPl 21121221   xx  (30) 

( ) ( ) ( )211221
 x,xAPl i

i
Ax,xsup µ=∑ ∈  (31) 

 
or 
 

( ) ( ) ( ) ( ){ }221121
min x,xAPl

i
Ax,xsup µµ=∑ ∈  (32) 

 
Let f be a mapping XXX →× 21 , then using equation (13,14) 
the random set ( )m,Ξ  in the space X can be calculated. Family 

Ξ  can be divide into parts iΞ . In each part condition (7) hold. If 
we define fuzzy membership function in the following way 
 



( ) ( )∑ ∈=µ Ax
i Amx  (33) 

 
where iA Ξ∈ . Upper probability of some event XA ⊂  can be 
calculated using the following formula 
 

( ) ( )∑ µ= ∈
i

i
Ax xAPl sup  (34) 

 
or using extension principle 
 

( ) ( ) ( ) ( ){ }221121
min x,xAPl ii

i Ax
x,xfxsup µµ=∑

∈
=  (35) 

 
Because 
 

( ) ( ) ( ){ }( )∑ = µµ=µ
21 2211min x,xfx

iii x,xx  (36) 

 
we can see that for each part iΞ  (or i

12Ξ ) calculations are the 
same like in classical theory of fuzzy sets [11]. 
 
5. −α level-cut method for consonant random set 

α-level-cat of some fuzzy number F  is defined as the 
following interval [3] 
 

( ){ }α≥µ=α xxF F :  (37) 
( ){ }0:0 >µ= xxclF F  (38) 

 
where Fµ  is the membership function of fuzzy set F. If we know 
α-level-cat of fuzzy number then we can calculate membership 
function using resolution identity [3]: 
 

( ) { }α∈α=µ FxsupxF  :  (39) 
 
Finite element method leads to the following system of parameter 
dependent system of equation 
 

( ) ( )hQqhK =  (40) 
 
where K is a stiffness matrix, Q is a vector of nodal forces, q is a 
vector of displacement and h is a vector of uncertain parameters. 
We assume that h is a vector of fuzzy parameters and calculate 
the following set of α-level-cat of the solution 
 

( ) ( ){ }αhh ,hQqhKqq ∈== αα  :  (41) 
 
To calculate the results of equation (41) sensitivity analysis 
method [7] or interval methods [8] can be applied. 
Then we can calculate fuzzy membership function of the solution 
of the equation (40) 
 

( ) { }α∈α=µ iiiiq qqsupq  :  (42) 

 
If uncertain parameters are modelled by non-consonant random 
sets then we have to built a family of membership function iµ  
using equation (33) 
 

6. −α level-cut method for non-consonant random set 
 

If random set ( )hh m,Ξ  is non-consonant calculation are 
much more complicated. If we can calculate each fuzzy 
membership function iµ  separately then α-level-cat method can 
be applied for all these function. If we know fuzzy membership 
function of the displacement i

jqµ  then upper probability that 

displacement jq  belongs to the interval ][][ +−= jjj q,qq  can be 
calculated using equation (34) 
 

( ) ( )j
i

jq
i jq,jqjqj qqPl sup µ=∑ +−∈   ][ ][  (43) 

 
Unfortunately usually we don’t know random set ( )hh m,Ξ  
which describes whole vector h. We have only random sets 
( )jj m,Ξ  which describe all coordinates jh . Each random set 

( )jj m,Ξ  we can divide into consonant parts ( )i
j

i
j m,Ξ  and 

calculate fuzzy membership function i
jµ . In this circumstance 

we don’t know what is the relation between fuzzy membership 
function of different coordinate jh . 

If we assume that all parameters jh  are independent then 
consonant random sets which describe whole vector h we can 
obtain using Cartesian products. Random set ( )hh m,Ξ  we can 

divide into the consonant parts ( )mi...imi...i m, 11
hhΞ  where 

 
mi
m

imi...i ... Ξ××Ξ=Ξ 1
1

1
h  (44) 

 
and 
 

( ) ( ) ( )m
mi

m
imi...i Am...AmAm ⋅⋅= 1
1

1
1
h  (45) 

 

where mA...AA ××= 1  and  ki
kkA Ξ∈ . Now we can calculate 

fuzzy membership functions 
 

( ) ( )∑ ∈=µ A
mi...imi...i Amh hh h 11  (46) 

 
or 
 

( ) ( )∑ ∈=µ
jAjh j

mi...i
jhj

mi...i
jh Amh 11  (47) 

( ) ( )( )∑ ==
jAAjojPr

mi...i
jhj

mi...i
jh AmAm 11  (48) 

 
where ( ) ( ) kmkkk AA...A...AojPrAojPr =××××= 1 . 
If we haven’t got information about dependency of random sets 
( )jj m,Ξ  then we should assume the worst case. In the worst 
case 
 

( ) ( ) ( )}{ 1
1

1
1

m
mi

m
imi...i Am,...,AmminAm =h  (49) 

 



In this case upper probability can be greater than 1. Because of 
this we assume that 
 

( ) ( ) 1}  ,{ 1∑ µ= ∈ hhh
mi...i

AsupminAPl  (50) 

 
7. Application of fuzzy sets theory to calculation of upper 

probability of failure of mechanical system. 
 

The reliability of the structures can be defined in the 
following way [4] 
 

( ){ }01 ≤=−= hgPRPf  (51) 
 
where the function g (state function) defines the state function 
representing the safe state and failure state [10], h is a vector of 
random parameters. In many cases only sparse and incomplete 
data are available. In such circumstances an interval number can 
be used to represent the probability measure in order to capture, 
in a relatively simply manner, features of fuzziness and 
incompleteness, so that 
 

[ ]+−∈ fff P,PP  (52) 
 
where 
 

[ ]( )0,gPlPf ∞−∈=+ , [ ]( )0,gBelPf ∞−∈=−  (53) 
 

+
fP  can be calculated using above described algorithm. −

fP  can 
be calculated using Monte-Carlo simulation and the equation [4]. 
Another way to calculate the interval (52) is described in the 
paper [10]. 
If uncertain parameters are described by consonant random sets 
then upper probability of failure can be calculated using the 
following formula 
 

( ) 0}:g{ g <µ=+ gsupPf  (54) 
 
where gµ  is a fuzzy membership function of the state function g. 
This function can be calculated using extension principle: 
 

( ) ( ) ( ) ( )} :{ 111 mmmhhg h,...,hggh...hsupg =µ∧∧µ=µ  (55) 

 
If we apply α-level-cat method algorithm of calculation is the 
following. 
1) Calculate α-level-cat of all fuzzy parameters  
 

( ){ }α≥µ=α iihii hhh :  (56) 

 
2) For all p,...,αα1  calculate ( ){ }αα ∈= iim hhh,...,hgg  :1 . 

Here sensitivity analysis methods can be applied [7]. 
3) Using resolution identity fuzzy membership function can be 

calculated: 
 

( ) { }  : α∈α=µ ggsupgg  (57) 
 
4) Using fuzzy membership function upper probability of 

failure can be calculated from formula (54). 

8. Conclusion 
 

In this paper a new method for modelling of uncertain 
parameters is presented. This method is based on the relation 
between fuzzy sets theory and theory of probability describes in 
the papers [4, 6]. The extension principle cannot be applied to 
fuzzy sets which was defined from non-consonant random set. 
This is the most important conclusion of this paper. For non-
consonant random sets some special procedures (described in this 
paper) should be applied. If all members of family Ξ  are points 
then operation on fuzzy sets are the same like in probability 
theory [9]. 

These results are of special interest in the framework of 
computational analysis. In fact, it is well known that, when 
incomplete statistical information is only available, it is easier to 
define fuzzy variables than random variables. Moreover, 
extended fuzzy operations are simpler than analogues operations 
required in the framework of probability.  

Examples of application of this method will be presented on 
the conference. 
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