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1. Need for Data Processing

• One of the main objectives of science is to predict fu-
ture values y of physical quantities:

– in meteorology, we need to predict future weather;

– in airplane control, we need to predict the location
and the velocity of the plane under current control.

• To make this prediction:

– we need to know the relation y = f(x1, . . . , xn) be-
tween y and related quantities x1, . . . , xn;

– then, we measure or estimate x1, . . . , xn;

– finally, we use the results x̃i of measurement
(or estimation) to compute an estimate

ỹ = f(x̃1, . . . , x̃n).

• This computation of ỹ is an important case of data
processing.
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2. Need to Take Uncertainty Into Account When
Processing Data

• Measurement are never absolutely accurate: in general,

∆xi
def
= x̃i − xi 6= 0.

• As a result, the estimate ỹ = f(x̃1, . . . , x̃n) is, in gen-
eral, different from the ideal value y = f(x1, . . . , xn).

• To estimate the accuracy ∆y
def
= ỹ−y, we need to have

some information about the measurement errors ∆xi.

• Traditional engineering approach assumes that we
know the probability distribution of each ∆xi.

• Often, ∆xi ∼ N(0, σi), and different ∆xi are assumed
to be independent.

• In such situations, our goal is to find the probability
distribution for ∆y.
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3. Cases of Interval and Fuzzy Uncertainty

• Often, we only know the upper bound ∆i: |∆xi| ≤ ∆i.

• Then, the only information about the xi is that

xi ∈ xi
def
= [x̃i −∆i, x̃i + ∆i].

• Different xi ∈ xi lead, in general, to different

y = f(x1, . . . , xn).

• We want to find the range y of possible values of y:

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

• To gauge the accuracy of expert estimates, it is reason-
able to use fuzzy techniques, i.e., to describe:

– for each possible value xi,

– the degree µi(xi) to which xi is possible.
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4. Measurement and Estimation Inaccuracies Are
Usually Small

• In many practical situations, the measurement and es-
timation inaccuracies ∆xi are relatively small.

• Then, we can safely ignore terms which are quadratic
(or of higher order) in terms of ∆xi:

∆y = ỹ− y = f(x̃1, . . . , x̃n)− f(x̃1−∆x1, . . . , x̃n−∆xn) =
n∑
i=1

ci ·∆xi, where ci =
∂f

∂xi
.

• If needed, the derivative can be estimated by numerical
differentiation

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
.
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5. Case of Interval Uncertainty

• Let us consider the case when ∆y =
n∑
i=1

ci ·∆xi.

• In this case, y = [ỹ−∆, ỹ+ ∆], where ∆ =
n∑
i=1

|ci| ·∆i.

• Sometimes, we have explicit expressions or efficient al-
gorithms for the partial derivatives ci.

• Often, however, we use proprietary software in our
computations.

• Then, we cannot use differentiation formulas, but we
can use numerical differentiation.

• Problem: We need n + 1 calls to f , to compute ỹ and
n values ci.

• When f is time-consuming and n is large, this takes
too long.
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6. A Faster Method: Cauchy-Based Monte-Carlo

• Idea: use Cauchy distribution ρ∆(x) =
∆

π
· 1

1 + x2/∆2
.

• Why: when ∆xi ∼ ρ∆i
(x) are indep., then

∆y =
n∑
i=1

ci ·∆xi ∼ ρ∆(x), with ∆ =
n∑
i=1

|ci| ·∆i.

• Thus, we simulate ∆x
(k)
i ∼ ρ∆i

(x); then,

∆y(k) def
= ỹ − f(x̃1 −∆x

(k)
1 , . . .) ∼ ρ∆(x).

• Maximum Likelihood method can estimate ∆:
N∏
k=1

ρ∆(∆y(k))→ max, so
N∑
k=1

1

1 + (∆y(k))2/∆2
=
N

2
.

• To find ∆ from this equation, we can use, e.g., the
bisection method for ∆ = 0 and ∆ = max

1≤k≤N
|∆y(k)|.
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7. Monte-Carlo: Successes and Limitations

• Fact: for Monte-Carlo, accuracy is ε ∼ 1/
√
N .

• Good news: the number N of calls to f depends only
the desired accuracy ε.

• Example: to find ∆ with accuracy 20% and certainty
95%, we need N = 200 iterations.

• Limitation: this method is not realistic; indeed:

– we know that ∆xi is inside [−∆i,∆i], but

– Cauchy-distributed variable has a high probability
to be outside this interval.

• Natural question: is it a limitation of our method, or
of a problem itself?
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8. Fuzzy Case: A Problem

-

· · ·
-

-

µn(xn)

µ2(x2)

µ1(x1)

-µ = f(µ1, . . . , µn)f

• Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers µi(xi).

• Compute: µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Motivation: y is a possible value of Y ↔∃x1, . . . , xn s.t.
each xi is a possible value of Xi and f(x1, . . . , xn) = y.

• Details: “and” is min, ∃ (“or”) is max, hence

µ(y) = max
x1,...,xn

min(µ1(x1), . . . , µn(xn), t(f(x1, . . . , xn) = y)),

where t(true) = 1 and t(false) = 0.



Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 11 of 72

Go Back

Full Screen

Close

Quit

9. Fuzzy Case: Reduction to Interval Computa-
tions

• Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers Xi described by membership functions µi(xi).

• Compute: Y = f(X1, . . . , Xn), where Y is defined by
Zadeh’s extension principle:

µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Idea: represent each Xi by its α-cuts

Xi(α) = {xi : µi(xi) ≥ α}.

• Advantage: for continuous f , for every α, we have

Y (α) = f(X1(α), . . . , Xn(α)).

• Resulting algorithm: for α = 0, 0.1, 0.2, . . . , 1 apply in-
terval computations techniques to compute Y (α).
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10. Open Problems

• In engineering applications, we want methods for esti-
mating uncertainty which are:

– accurate – this is most important in most engineer-
ing applications;

– fast: this is important in some engineering applica-
tions where we need real-time computations,

– understandable to engineers – otherwise, engineers
will be reluctant to use them, and

– sufficiently general – so that they can be applied in
all kinds of situations.

• It is thus desirable to design more accurate, faster,
more understandable, and/or more general methods.
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11. What We Do in This Thesis

• First, we show how to make the current methods more
accurate.

• Then, we show how to make these methods faster.

• After that, we show how to make these methods more
understandable to engineers.

• Finally, we analyze how to make these methods more
general.

• We also describe remaining open problems and our
plan for future work.
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Part II

How to Get More Accurate
Estimates – by Properly Taking
Model Inaccuracy into Account
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12. Linearization-Based Algorithm: Reminder

• We know: an algorithm f(x1, . . . , xn) and values ỹi
and ∆i.

• We need to find: the range of values f(x1, . . . , xn) when
xi ∈ [x̃i −∆i, x̃i + ∆i].

• Algorithm:

1) first, we compute ỹ = f(x̃1, . . . , x̃n);

2) then, for each i from 1 to n, we compute

yi = f(x̃1, . . . , x̃i−1, x̃i + ∆i, x̃i+1, . . . , x̃n);

3) after that, we compute y = ỹ +
n∑
i=1

|yi − ỹ| and

y = ỹ −
n∑
i=1

|yi − ỹ|.
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13. Taking Model Inaccuracy into Account

• We rarely know the exact dependence y =
f(x1, . . . , xn).

• We have an approx. model F (x1, . . . , xn) w/known ac-
curacy ε: |F (x1, . . . , xn)− f(x1, . . . , xn)| ≤ ε.

• We know: an algorithm F (x1, . . . , xn), accuracy ε, val-
ues x̃i and ∆i.

• Find: the range {f(x1, . . . , xn) : xi ∈ [x̃i−∆i, x̃i+∆i]}.

• If we use the approximate model in our estimate, we

get Y = Ỹ +
n∑
i=1

|Yi − Ỹ |.

• Here, |Ỹ − ỹ| ≤ ε and |Yi − yi| ≤ ε, so |y − Y | ≤
(2n+ 1) · ε.

• Thus, we arrive at the following algorithm.
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14. Resulting Algorithm

• We know: an algorithm F (x1, . . . , xn), accuracy ε, val-
ues x̃i and ∆i.

• Find: the range {f(x1, . . . , xn) : xi ∈ [x̃i−∆i, x̃i+∆i]}.

• Algorithm:

1) compute Ỹ = Y (x̃1, . . . , x̃n) and

Yi = F (x̃1, . . . , x̃i−1, x̃i + ∆i, x̃i+1, . . . , x̃n).

2) compute B = Ỹ +
n∑
i=1

|Yi − Ỹ | + (2n + 1) · ε and

B = Ỹ −
n∑
i=1

|Yi − Ỹ | − (2n+ 1) · ε.

• Problem: when n is large, then, even for reasonably
small inaccuracy ε, the value (2n+ 1) · ε is large.

• What we do: we show how we can get better estimates
for y.
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15. How to Get Better Estimates: Idea

• One possible source of model inaccuracy is discretiza-
tion (e.g., FEM).

• When we select a different combination of parameters,
we get an unrelated value of inaccuracy.

• So, let’s consider approx. errors ∆y
def
= F (x1, . . . , xn)−

f(x1, . . . , xn) as independent random variables.

• What is a probability distribution for these random
variables? We know that ∆y ∈ [−ε, ε].

• We do not have any reason to assume that some values
from this interval are more probable than others.

• So, it is reasonable to assume that all the values are
equally probable: a uniform distribution.

• For this uniform distribution, the mean is 0, and the

standard deviation is σ =
ε√
3

.
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16. How to Get a Better Estimate for ỹ

• In our main algorithm, we apply the computational
model F to n+ 1 different tuples.

• Let’s also compute M
def
= F (x̃1 −∆1, . . . , x̃n −∆n).

• In linearized case, ỹ +
n∑
i=1

yi + m = (n + 2) · ỹ, so ỹ =

1

n+ 2
·

(
ỹ +

n∑
i=1

yi +m

)
, and we can estimate ỹ as

Ỹnew =
1

n+ 2
·

(
Ỹ +

n∑
i=1

Yi +m

)
.

• Here, ∆ỹnew =
1

n+ 2
·

(
∆ỹ +

n∑
i=1

∆yi + ∆m

)
, so its

variance is σ2
[
Ỹnew

]
=

ε2

3 · (n+ 2)
� ε2

3
= σ2

[
Ỹ
]
.
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17. Let Us Use Ỹnew When Estimating y

• Let us compute Y new = Ỹnew +
n∑
i=1

|Yi − Ỹnew|.

• Here, when si ∈ {−1, 1} are the signs of yi− ỹ, we get:

y = ỹ +
n∑
i=1

si · (yi − ỹ) =

(
1−

n∑
i=1

si

)
· ỹ +

n∑
i=1

si · yi.

• Thus, ∆ynew =

(
1−

n∑
i=1

si

)
·∆ỹnew +

n∑
i=1

si ·∆yi, so

σ2 =

(
1−

n∑
i=1

si

)2

· ε2

3 · (n+ 2)
+

n∑
i=1

ε2

3
.

• Here, |si| ≤ 1, so

∣∣∣∣1− n∑
i=1

si

∣∣∣∣ ≤ n+ 1, and

σ2 ≤ ε2

3
· (2n+ 1).
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18. Using Ỹnew (cont-d)

• We have ∆ynew =

(
1−

n∑
i=1

si

)
·∆ỹnew +

n∑
i=1

si ·∆yi.

• Due to the Central Limit Theorem, ∆ynew is ≈ normal.

• We know that σ2 ≤ ε2

3
· (2n+ 1).

• Thus, with certainty depending on k0, we have

y ≤ Y new + k0 · σ ≤ Y new + k0 ·
ε√
3
·
√

2n+ 1 :

• with certainty 95% for k0 = 2,

• with certainty 99.9% for k0 = 3, etc.

• Here, inaccuracy grows as
√

2n+ 1.

• This is much better than in the traditional approach,
where it grows ∼ 2n+ 1.
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19. Resulting Algorithm

• We know: F (x1, . . . , xn), ε, x̃i and ∆i.

• We want: to find the range of f(x1, . . . , xn) when
xi ∈ [x̃i −∆i, x̃i + ∆i].

• Algorithm:

1) compute Ỹ = F (x̃1, . . . , x̃n),

M = F (x̃1 −∆1, . . . , x̃n −∆n), and

Yi = F (x̃1, . . . , x̃i−1, x̃i + ∆i, x̃i+1, . . . , x̃n);

2) compute Ỹnew =
1

n+ 2
·

(
Ỹ +

n∑
i=1

Yi +M

)
,

b = Ỹnew +
n∑
i=1

∣∣∣Yi − Ỹnew

∣∣∣+ k0 ·
√

2n+ 1 · ε√
3

;

b = Ỹnew −
n∑
i=1

∣∣∣Yi − Ỹnew

∣∣∣− k0 ·
√

2n+ 1 · ε√
3
.



Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 23 of 72

Go Back

Full Screen

Close

Quit

20. A Similar Improvement Is Possible for the
Cauchy Method

• In the Cauchy method, we compute Ỹ and the values

Y (k) = F (x̃1 + η
(k)
1 , . . . , x̃n + η(k)

n ).

• We can then compute the improved estimate for ỹ, as:

Ỹnew =
1

N + 1
·

(
Ỹ +

N∑
k=1

Y (k)

)
.

• We can now use this improved estimate when estimat-
ing the differences ∆y(k): namely, we compute

Y (k) − Ỹnew.
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21. Experimental Testing: Seismic Inverse Prob-
lem in Geophysics

• Problem: reconstruct the velocity of sound vi at differ-
ent spatial locations and at different depths.

• What we know: the travel-times tj of a seismic signal
from the set-up explosion to seismic stations.

• Hole’s iterative algorithm:

– we start with geology-motivated values v
(1)
i ;

– based on the current approximation v
(k)
i , we esti-

mate the travel times t
(k)
j ;

– update vi:
1

v
(k+1)
i

=
1

v
(k)
i

+
1

ni
·
∑
j

tj − t(k)
j

Lj
.

• Using Ỹnew decreased the inaccuracy σ, on average, by
15%; σ increased only in one case (only by 7%).
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22. Case Study: Seismic Inverse Problem in the
Geosciences
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23. Can We Further Improve the Accuracy?

• The inaccuracy Y 6= y is caused by using elements of
finite size h.

• This inaccuracy is proportional to h.

• If we decrease h to h′, we thus need K
def
=

h3

(h′)3
more

cells, so we need K times more computations.

• Thus, the accuracy decreases as 3
√
K.

• New idea: select K small vectors
(

∆
(k)
1 , . . . ,∆

(k)
n

)
which add up to 0, and estimate ỹ as

YK(x1, . . . , xn) =
1

K
·
K∑
k=1

F
(
x1 + ∆

(k)
1 , . . . , xn + ∆(k)

n

)
.

• Averaging K independent random errors decreases the
inaccuracy by a factor of

√
K, much faster than 3

√
K.
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Part III

How to Speed Up Computations –
by Processing Different Types of
Uncertainty Separately
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24. Cases for Which a Speed-Up Is Possible

• Sometimes, all membership functions are “of the same
type”: µ(z) = µ0(k · z) for some symmetric µ0(z).

• Example: for triangular functions,

µ0(z) = max(1− |z|, 0).

• In this case, µ(z) ≥ α is equivalent to µ0(k · z) ≥ α, so
α∆0 = k · α∆ and 0∆0 = k · 0∆.

• Thus, α∆ = f(α) · 0∆, where f(α)
def
=

α∆0

0∆0
.

• For example, for a triangular membership function, we
have f(α) = 1− α.

• So, if we know the type µ0 (hence f(α)), and we know
the 0-cut, we can compute all α-cuts as α∆ = f(α)·0∆.

• So, if µi(∆xi) are of the same type, then for all α, we
have α∆i = f(α) · 0∆i
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25. When a Speed-Up Is Possible (cont-d)

• We know that α∆ =
n∑
i=1

|ci| · α∆i.

• For α∆i = f(α) · 0∆i, we get

α∆ =
n∑
i=1

|ci| · f(α) · 0∆i.

• So, α∆ = f(α) ·
n∑
i=1

|ci| · 0∆i = f(α) · 0∆.

• Thus, if all µ(x) are of the same type µ0(z), there is no
need to compute α∆ eleven times:

– it is sufficient to compute 0∆;

– to find all other values α∆, we simply multiply 0∆
by the factors f(α) corresponding to µ0(z).
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26. A More General Case

• A more general case is:

– when we have a list of T different types of uncer-
tainty – i.e., types of membership functions, and

– each approximation error ∆xi consists of ≤ T com-
ponents of the corresponding type t:

∆xi =
T∑
t=1

∆xi,t.

• For example:

– type t = 1 may correspond to intervals (which are,
of course, a particular case of fuzzy uncertainty),

– type t = 2 may correspond to triangular member-
ship functions, etc.
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27. How This Case Is Processed Now

• First stage:

– we use the known membership functions µi,t(∆xi,t)

– to find the memberships functions µi(∆xi) that cor-
respond to the sum ∆xi.

• Second stage: we use µi(∆xi) to compute the desired
membership function µ(∆y).

• Problem: on the second stage, we apply the above for-
mula eleven times:

α∆ =
n∑
i=1

|ci| · α∆i.
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28. Main Idea

• We have ∆y =
n∑
i=1

ci ·∆xi, where

∆xi =
T∑
t=1

∆xi,t.

• Thus, ∆y =
n∑
i=1

ci ·
(

T∑
t=1

∆xi,t

)
.

• Grouping together all the terms corr. to type t, we get

∆y =
T∑
t=1

∆yt, where ∆yt
def
=

n∑
i=1

ci ·∆xi,t.

• For each t, we are combining membership functions of
the same type, so it is enough to compute 0∆t.

• Then, we add the resulting membership functions – by
adding the corresponding α-cuts.



Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 34 of 72

Go Back

Full Screen

Close

Quit

29. Resulting Algorithm

• Let [−0∆i,t,
0∆i,t] be 0-cuts of the membership func-

tions µi,t(∆xi,t).

• Based on these 0-cuts, we compute, for each type t, the

values 0∆t =
n∑
i=1

|ci| · 0∆i,t.

• Then, for α = 0, α = 0.1, . . . , and for α = 1.0, we
compute the values α∆t = ft(α) · 0∆t.

• Finally, we add up α-cuts corresponding to different

types t, to come up with the expression α∆ =
T∑
t=1

α∆t.

• Comment. We can combine the last two steps into a

single step: α∆ =
T∑
t=1

ft(α) · 0∆t.
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30. The New Algorithm Is Much Faster

• The original algorithm computed the above formula
eleven times:

α∆ =
n∑
i=1

|ci| · α∆i.

• The new algorithm uses the corresponding formula T
times, i.e., as many times as there are types.

• All the other computations are much faster, since they
do not grow with the input size n.

• Thus, if the number T of different types is smaller than
eleven, the new methods is much faster.

• Example: for T = 2 types (e.g., intervals and triangu-

lar µ(x)), we get a
11

2
= 5.5 times speedup.



Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 36 of 72

Go Back

Full Screen

Close

Quit

31. Conclusions and Future Work

• We can therefore conclude that sometimes, it is benefi-
cial to process different types of uncertainty separately.

• Namely, it is beneficial when we have ten or fewer dif-
ferent types of uncertainty.

• The fewer types of uncertainty we have, the faster the
resulting algorithm.

• We plan to test this idea of several actual data pro-
cessing examples.

• We also plan to extend this idea to other types of un-
certainty, in particular, to probabilistic uncertainty.
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Part IV

Towards a Better
Understandability of
Uncertainty-Estimating
Algorithms: Explaining the Need
for Non-Realistic Monte-Carlo
Simulations
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32. Formulation of the Problem: Reminder

• Good news: Cauchy-based Monte-Carlo method is an
efficient way of estimating interval uncertainty.

• Limitation: this method is not realistic; indeed:

– we know that ∆xi is inside [−∆i,∆i], but

– Cauchy-distributed variable has a high probability
to be outside this interval.

• Natural question: is it a limitation of our method, or
of a problem itself?

• Our answer: for interval uncertainty, a realistic Monte-
Carlo method is not possible.
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33. Proof: Case of Independent Variables

• It is sufficient to prove that we cannot get the correct
estimate for one specific function

f(x1, . . . , xn) = x1+. . .+xn, when ∆y = ∆x1+. . .+∆xn.

• When each variables ∆xi is in the interval [−δ, δ], then
the range of ∆y is [−∆,∆], where ∆ = n · δ.

• In Monte-Carlo, ∆y(k) = ∆x
(k)
1 + . . .+ ∆x

(k)
n .

• ∆
(k)
i are i.i.d. Due to the Central Limit Theorem, when

n→∞, the distribution of the sum tends to Gaussian.

• For a normal distribution, with very high confidence,
∆y ∈ [µ− k · σ, µ+ k · σ].

• Here, σ ∼
√
n, so this interval has width w ∼

√
n.

• However, the actual range of ∆y is ∼ n� w. Q.E.D.
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34. General Case

• Let’s take f(x1, . . . , xn) = s1 · x1 + . . .+ sn · xn, where
si ∈ {−1, 1}.

• Then, ∆ =
n∑
i=1

|ci| ·∆i = n · δ.

• Let ε > 0, δ > 0, and p ∈ (0, 1). We consider proba-
bility distributions P on the set of all vectors

(∆x1 . . . ,∆xn) ∈ [−δ, δ]× . . .× [−δ, δ].

• We say that P is a (p, ε)-realistic Monte-Carlo estima-
tion (MCE) if for all si ∈ {−1, 1}, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) ≥ p.

• Result. If for every n, we have a (pn, ε)-realistic
MCE, then pn ≤ β · n · cn for some β > 0 and c < 1.

• For probability pn, we need 1/pn ∼ c−n simulations –
more than n+ 1 for numerical differentiation.
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35. Why Cauchy Distribution: Formulation of the
Problem

• We want to find a family of probability distributions
with the following property:

– when independent X1, . . . , Xn have distributions
from this family with parameters ∆1, . . . ,∆n,

– then each Y = c1 ·X1 + . . .+ cn ·Xn ∼ ∆ ·X, where

X corr. to parameter 1, and ∆ =
n∑
i=1

|ci| ·∆i.

• In particular, for ∆1 = . . . = ∆n = 1, the desired
property of this probability distribution is as follows:

– if we have n independent identically distributed
random variables X1, . . . , Xn,

– then each Y = c1 ·X1 + . . .+ cn ·Xn has the same

distribution as ∆ ·Xi, where ∆ =
n∑
i=1

|ci|.
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36. Analysis of the Problem

• For n = 1 and c1 = −1, the desired property says that
−X ∼ X, the distribution is even.

• A usual way to describe a probability distribution is to
use a probability density function ρ(x).

• Often, it is convenient to use its Fourier transform –

the characteristic function χX(ω)
def
= E[exp(i · ω ·X)].

• When Xi are independent, then for S = X1 +X2:

χS(ω) = E[exp(i · ω · S)] = E[exp(i · ω · (X1 +X2)] =

E[exp(i · ω ·X1 + i · ω ·X2)] =

E[exp(i · ω ·X1) · exp(i · ω ·X2)].

• Since X1 and X2 are independent,

χS(ω) = E[exp(i·ω·X1)]·E[exp(i·ω·X2)] = χX1
(ω)·χX2

(ω).
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37. Analysis of the Problem (cont-d)

• Similarly, for Y =
n∑
i=1

ci ·Xi, we have

χY (ω) = E[exp(i·ω·Y )] = E

[
exp

(
i · ω ·

n∑
i=1

ci ·Xi

)]
=

E

[
n∏
i=1

exp (i · ω · ci ·Xi)

]
=

n∏
i=1

χX(ω · ci).

• The desired property is Y ∼ ∆ ·X, so

n∏
i=1

χX(ω·ci) = χ∆·X(ω) = E[exp(i·ω·(∆·X))]χX(ω·∆),

so χX(c1 ·ω) · . . . ·χX(cn ·ω) = χX((|c1|+ . . .+ |cn|) ·ω).

• In particular, for n = 1, c1 = −1, we get χX(−ω) =
χX(ω), so χX(ω) should be an even function.
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38. Analysis of the Problem (cont-d)

• Reminder:

χX(c1 · ω) · . . . · χX(cn · ω) = χX((|c1|+ . . .+ |cn|) · ω).

• For n = 2, c1 > 0, c2 > 0, and ω = 1, we get

χX(c1 + c2) = χX(c1) · χX(c2).

• The characteristic function should be measurable.

• Known: the only measurable functions with this prop-
erty are χX(ω) = exp(−k · ω) for some k.

• Due to evenness, for a general ω, we get χX(ω) =
exp(−k · |ω|).

• By applying the inverse Fourier transform, we conclude
that X is Cauchy distributed.

• Conclusion: so, only Cauchy distribution works.
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Part V

How General Can We Go: What
Is Computable and What Is Not
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39. Need to Take Uncertainty Into Account When
Processing Data: Reminder

• In practice, we are often interested in a quantity y
which is difficult to measure directly.

• Examples: distance to a star, amount of oil in the well,
tomorrow’s weather.

• Solution: find easier-to-measure quantities x1, . . . , xn
related to y by a known dependence y = f(x1, . . . , xn).

• Then, we measure xi and use measurement results x̃i
to compute an estimate ỹ = f(x̃1, . . . , x̃n).

• Measurements are never absolutely accurate, so even if

the model f is exact, x̃i 6= xi leads to ∆y
def
= ỹ− y 6= 0.

• It is important to use information about measurement

errors ∆xi
def
= x̃i − xi to estimate the accuracy ∆y.
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40. We Often Have Imprecise Probabilities

• Usual assumption: we know the probabilities for ∆xi.

• To find them, we measure the same quantities:

– with our measuring instrument (MI) and

– with a much more accurate MI, with x̃st
i ≈ xi.

• In two important cases, this does not work:

– state-of-the-art measurements, and

– measurements on the shop floor.

• Then, we have partial information about probabilities.

• Often, all we know is an upper bound |∆xi| ≤ ∆i.

• Then, we only know that xi ∈ [x̃i −∆i, x̃i + ∆i] and

y ∈ [y, y]
def
= {f(x1, . . . , xn) : xi ∈ [x̃i −∆i, x̃i + ∆i]}.

• Computing [y, y] is known as interval computation.
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41. How Do We Describe Imprecise Probabilities?

• Ultimate goal of most estimates: to make decisions.

• Known: a rational decision-maker maximizes expected
utility E[u(y)].

• For smooth u(y), y ≈ ỹ implies that

u(y) = u(x̃) + (y − ỹ) · u′(ỹ) +
1

2
· (y − ỹ)2 · u′′(ỹ).

• So, to find E[u(y)], we must know moments E[(y−ỹ)k].

• Often, u(x) abruptly changes: e.g., when pollution

level exceeds y0; then E[u(y)] ∼ F (y)
def
= Prob(y ≤ y0).

• From F (y), we can estimate moments, so F (x) is
enough.

• Imprecise probabilities mean that we know F (y), we
only know bounds (p-box) F (y) ≤ F (y) ≤ F (y).
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42. What Is Computable?

• Computations with p-boxes are practically important.

• It is thus desirable to come up with efficient algorithms
which are as general as possible.

• It is known that too general problems are often not
computable.

• To avoid wasting time, it is therefore important to find
out what can be computed.

• At first glance, this question sounds straightforward:

– to describe a cdf, we can consider a computable
function F (x);

– to describe a p-box, we consider a computable func-
tion interval [F (x), F (x)].

• Often, we can do that, but we will show that some-
times, we need to go beyond function intervals.
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43. Reminder: What Is Computable?

• A real number x corresponds to a value of a physical
quantity.

• We can measure x with higher and higher accuracy.

• So, x is called computable if there is an algorithm, that,
given k, produces a rational rk s.t. |x− rk| ≤ 2−k.

• A computable function computes f(x) from x.

• We can only use approximations to x.

• So, an algorithm for computing a function can, given
k, request a 2−k-approximation to x.

• Most usual functions are thus computable.

• Exception: step-function f(x) = 0 for x < 0 and
f(x) = 1 for x ≥ 0.

• Indeed, no matter how accurately we know x ≈ 0, from
rk = 0, we cannot tell whether x < 0 or x ≥ 0.
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44. Consequences for Representing a cdf F (x)

• We would like to represent a general probability distri-
bution by its cdf F (x).

• From the purely mathematical viewpoint, this is indeed
the most general representation.

• At first glance, it makes sense to consider computable
functions F (x).

• For many distributions, e.g., for Gaussian, F (x) is com-
putable.

• However, when x = 0 with probability 1, the cdf F (x)
is exactly the step-function.

• And we already know that the step-function is not com-
putable.

• Thus, we need to find an alternative way to represent
cdf’s – beyond computable functions.
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45. Back to the Drawing Board

• Each value F (x) is the probability that X ≤ x.

• We cannot empirically find exact probabilities p.

• We can only estimate frequencies f based on a sample
of size N .

• For large N , the difference d
def
= p−f is asymptotically

normal, with µ = 0 and σ =

√
p · (1− p)

N
.

• Situations when |d−µ| < 6σ are negligibly rare, so we
conclude that |f − p| ≤ 6σ.

• For large N , we can get 6σ ≤ δ for any accuracy δ > 0.

• We get a sample X1, . . . , XN .

• We don’t know the exact values Xi, only measured
values X̃i s.t. |X̃i −Xi| ≤ ε for some accuracy ε.

• So, what we have is a frequency f = Freq(X̃i ≤ x).
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46. Resulting Definition

• Here, Xi ≤ x− ε⇒ X̃i ≤ x⇒ Xi ≤ x+ ε, so

Freq(Xi ≤ x− ε) ≤ f = Freq(X̃i ≤ x) ≤ Freq(Xi ≤ x+ ε).

• Frequencies are δ-close to probabilities, so we arrive at
the following:

• For every x, ε > 0, and δ > 0, we get a rational number
f such that F (x− ε)− δ ≤ f ≤ F (x+ ε) + δ.

• This is how we define a computable cdf F (x).

• In the computer, to describe a distribution on an in-
terval [T , T ]:

– we select a grid x1 = T , x2 = T + ε, . . . , and

– we store the corr. frequencies fi with accuracy δ.

• A class of possible distribution is represented, for each
ε and δ, by a finite list of such approximations.
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47. First Equivalent Definition

• Original: ∀x∀ε>0 ∀δ>0, we get a rational f such that

F (x− ε)− δ ≤ f ≤ F (x+ ε) + δ.

• Equivalent: ∀x ∀ε>0 ∀δ>0, we get a rational f which is
δ-close to F (x′) for some x′ such that |x′ − x| ≤ ε.

• Proof of equivalence:

– We know that F (x+ε)−F (x+ε/3)→ 0 as ε→ 0.

– So, for ε = 2−k, k = 1, 2, . . ., we take f and f ′ s.t.

F (x+ ε/3)− δ/4 ≤ f ≤ F (x+ (2/3) · ε) + δ/4

F (x+ (2/3) · ε)− δ/4 ≤ f ′ ≤ F (x+ ε) + δ/4.

– We stop when f and f ′ are sufficiently close:

|f − f ′| ≤ δ.

– Thus, we get the desired f .
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48. Second Equivalent Definition

• We start with pairs (x1, f1), (x2, f2), . . .

• When fi+1 − fi > δ, we add intermediate pairs

(xi, fi + δ), (xi, fi + 2δ), . . . , (xi, fi+1).

• The resulting set of pairs is (ε, δ)-close to the graph
{(x, y) : F (x−0) ≤ y ≤ F (x)} in Hausdorff metric dH .

• (x, y) and (x′, y′) are (ε, δ)-close if |x − x′| ≤ ε and
|y − y′| ≤ δ.

• The sets S and S ′ are (ε, δ)-close if:

– for every s ∈ S, there is a (ε, δ)-close point s′ ∈ S ′;
– for every s′ ∈ S ′, there is a (ε, δ)-close point s ∈ S.

• Compacts with metric dH form a computable compact.

• So, F (x) is a monotonic computable object in this com-
pact.
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49. What Can Be Computed: A Positive Result
for the 1D Case

• Reminder: we are interested in F (x) and EF (x)[u(x)]
for smooth u(x).

• Reminder: estimate for F (x) is part of the definition.

• Question: computing EF (x)[u(x)] for smooth u(x).

• Our result: there is an algorithm that:

– given a computable cdf F (x),

– given a computable function u(x), and

– given accuracy δ > 0,

– computes EF (x)[u(x)] with accuracy δ.

• For computable classes F of cdfs, a similar algorithm
computes the range of possible values

[u, u]
def
= {EF (x)[u(x)] : F (x) ∈ F}.
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50. Proof: Main Idea

• Computable functions are computably continuous: for
every δ > 0, we can compute ε > 0 s.t.

|x− x′| ≤ ε⇒ |f(x)− f(x′)| ≤ δ.

• We select ε corr. to δ/4, and take a grid with step ε/4.

• For each xi, the value fi is (δ/4)-close to F (x′i) for some
x′i which is (ε/4)-close to xi.

• The function u(x) is (δ/2)-close to a piece-wise con-
stant function u′(x) = u(xi) for x ∈ [x′i, x

′
i+1].

• Thus, |E[u(x)]− E[u′(x)]| ≤ δ/2.

• Here, E[u′(x)] =
∑
i

u(xi) · (F (x′i+1)− F (x′i)).

• Here, F (x′i) is close to fi and F (x′i+1) is close to fi+1.

• Thus, E[u′(x)] (and hence, E[u(x)]) is computably
close to a computable sum

∑
i

u(xi) · (fi+1 − fi).
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51. What to Do in a Multi-D Case?

• For each g(x), y, ε > 0, and δ > 0, we can find a
frequency f such that:

|P (g(x) ≤ y′)− f | ≤ ε for some y′ s.t. |y − y′| ≤ δ.

• We select an ε-net x1, . . . , xn for X. Then,

X =
⋃
i

Bε(xi), where Bε(x)
def
= {x′ : d(x, x′) ≤ ε}.

• We select f1 which is close to P (Bε′(x1)) for all ε′ from
some interval [ε, ε] which is close to ε.

• We then select f2 which is close to P (Bε′(x1)∪Bε′(x2))
for all ε′ from some subinterval of [ε, ε], etc.

• Then, we get approximations to probabilities of the
sets Bε(xi)− (Bε(x1) ∪ . . . ∪Bε(xi−1)).

• This lets us compute the desired values E[u(x)].
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Part VI

Conclusions and Future Work
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52. Conclusions

• In many practical application, we process measurement
results and expert estimates.

• Measurements and expert estimates are never abso-
lutely accurate.

• Their result are slightly different from the actual (un-
known) values of the corresponding quantities.

• It is therefore desirable to analyze how measurement
inaccuracy affects the results of data processing.

• There exist numerous methods for estimating the ac-
curacy of the results of data processing.

• These methods cover different models of inaccuracy:
probabilistic, interval, and fuzzy.
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53. Conclusions (cont-d)

• To be useful in engineering applications, the uncer-
tainty methods should satisfy the following objectives.

• They should provide accurate estimate for the resulting
uncertainty.

• They should not take too much computation time.

• They should be understandable to engineers.

• They should be sufficiently general to cover all kinds
of uncertainty.
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54. Conclusions (final)

• In this thesis, on several case studies, we show how we
can achieve these four objectives.

• We show that we can get more accurate estimates by
properly taking model inaccuracy into account.

• We show that we can speed up computations by pro-
cessing different types of uncertainty differently.

• We show that we can make uncertainty-estimating al-
gorithms more understandable.

• We also analyze how general uncertainty-estimating al-
gorithms can be.
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55. Future Work

• In our future work, we plan to continue working in
these four directions.

• In particular, we plan to extend our speed-up algo-
rithms from fuzzy to probabilistic uncertainty.

• One of the main reasons for estimation and data pro-
cessing is to make decisions; we thus plan to analyze:

– how the corresponding uncertainty affects decision
making, and

– what is the best way to make decisions under dif-
ferent types of uncertainty.

• We plan to apply these algorithms to practical engi-
neering problems, e.g., pavement compaction.
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Part VII

Proofs
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57. Proof of the Main Result from Part 4

• Let us pick some α ∈ (0, 1).

• Let us denote, by m, the number of indices i or which
si ·∆xi > α · δ.
• If we have s1 ·∆x1 + . . .+sn ·∆xn ≥ n · δ · (1−ε), then:

– for n−m indices, we have si ·∆xi ≤ α · δ and

– for the other m indices, we have si ·∆xi ≤ δ.

• Thus, n · δ · (1− ε) ≤
n∑
i=1

si ·∆xi ≤ m · δ+ (n−m) ·α · δ.

• Dividing this inequality by δ, we get

n · (1− ε) ≤ m+ (n−m) · α.

• So, n · (1−α− ε) ≤ m · (1−α) and m ≥ n · 1− α− ε
1− α

.

• So, we have at least n · 1− α− ε
1− α

indices for which ∆xi

has the same sign as si (and for which |∆xi| > α · δ).
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58. Proof from Part 4 (cont-d)

• So, for ∆xi corr. to (s1, . . . , sn), at most n · ε

1− α− ε
indices have a different sign than si.

• It is possible that the same tuple ∆x can serve two
tuples s 6= s′. In this case:

– going from si to sign(∆xi) changes at most

n · ε

1− α− ε
signs, and

– going from sign(∆xi) to s′i also changes at most

n · ε

1− α− ε
signs.

• Thus, between the tuples s and s′, at most 2· ε

1− α− ε
signs are different.

• In other words, for the Hamming distance d(s, s′)
def
=

#{i : si 6= s′i}, we have d(s, s′) ≤ 2 · n · ε

1− α− ε
.
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59. Proof from Part 4 (cont-d)

• Thus, if d(s, s′) > 2 · n · ε

1− α− ε
, then no tuples

(∆x1, . . . ,∆xn) can serve both sign tuples s and s′.

• In this case, the two sets of tuples ∆x do not intersect:

– tuples s.t. s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε);
– tuples s.t. s′1 ·∆x1 + . . .+ s′n ·∆xn ≥ n · δ · (1− ε).

• Let’s take take M sign tuples s(1), . . . , s(M) for which

d(s(i), s(j)) > 2 · ε

1− α− ε
for all i 6= j.

• Then the probability P that ∆x serves one of these
sign tuples is ≥M · p.

• Since P ≤ 1, we have p ≤ 1

M
; so:

– to prove that pn is exponentially decreasing,

– it is sufficient to find the sign tuples whose number
M is exponentially increasing.
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60. Proof from Part 4 (cont-d)

• Let us denote β
def
=

ε

1− α− ε
.

• Then, for each sign tuple s, the number t of all sign
tuples s′ for which d(s, s′) ≤ β · n is equal to the sum
of:

– the number of tuples

(
n

0

)
that differ from s in 0

places,

– the number of tuples

(
n

1

)
that differ from s in 1

place, . . . ,

– the number of tuples

(
n

β · n

)
that differ from s in

β · n places,

• Thus, t =

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n · β

)
.
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61. Proof from Part 4 (cont-d)

• When β < 0.5 and β · n < n

2
, the number of combina-

tions

(
n

k

)
increases with k, so t ≤ β · n ·

(
n

β · n

)
.

• Here,

(
a

b

)
=

a!

b! · (a− b)!
. Since n! ∼

(n
e

)n
, we have

t ≤ β · n ·
(

1

ββ · (1− β)1−β

)n
.

• Here, γ
def
=

1

ββ · (1− β)1−β = exp(S), where S
def
= −β ·

ln(β)− (1− β) · ln(1− β) is Shannon’s entropy.

• It is known that S attains its largest value when β =
0.5, in which case S = ln(2) and γ = exp(S) = 2.

• When β < 0.5, we have S < ln(2), thus, γ < 2, and
t ≤ β · n · γn for some γ < 2.
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62. Proof from Part 4 (cont-d)

• Let us now construct the desired collection of sign tu-
ples s(1), . . . , s(M).

– We start with some sign tuple s(1), e.g., s(1) =
(1, . . . , 1).

– Then, we dismiss t ≤ γn tuples which are ≤ β-close
to s, and select one of the remaining tuples as s(2).

– We then dismiss t ≤ γn tuples which are ≤ β-close
to s(2).

– Among the remaining tuples, we select the tuple
s(3), etc.

• Once we have selected M tuples, we have thus dis-
missed t ·M ≤ β · n · γn ·M sign tuples.

• So, as long as this number is smaller than the overall
number 2n of sign tuples, we can continue selecting.
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63. Proof from Part 4 (conclusions)

• Our procedure ends when we have selected M tuples
for which β · n · γn ·M ≥ 2n.

• Thus, we have selected M ≥
(

2
γ

)n
· 1

β · n
tuples.

• So, we have indeed selected exponentially many tuples.

• Hence, pn ≤
1

M
≤ β · n ·

(γ
2

)n
, i.e.,

pn ≤ β · n · cn, where c
def
=
γ

2
< 1.

• So, the probability pn is indeed exponentially decreas-
ing. The main result is proven.
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