## Combining Interval and Probabilistic Uncertainty in Engineering Applications

Andrew Pownuk

Computational Science Program University of Texas at El Paso El Paso, Texas 79968, USA ampownuk@utep.edu Introduction How to Get More ... How to Speed Up... Towards a Better .... How General Can We. Proofs Home Page •• Page 1 of 72 Go Back Full Screen Close Quit

## Part I Introduction

|    |                                | utur du etien |  |  |
|----|--------------------------------|---------------|--|--|
| In | ntroduction<br>low to Get More |               |  |  |
| Ha | ow to Get                      | More          |  |  |
| Ho | ow to Spee                     | ed Up         |  |  |
| Тс | Towards a Better               |               |  |  |
| Ho | How General Can We             |               |  |  |
| Pr | roofs                          |               |  |  |
|    |                                |               |  |  |
|    | Ноте                           | Page          |  |  |
|    | Title                          | Page          |  |  |
|    | ••                             | ••            |  |  |
|    | •                              |               |  |  |
|    | Page 2                         | 2 of 72       |  |  |
|    | Go I                           | Back          |  |  |
|    | Full S                         | Screen        |  |  |
|    | Cla                            | ose           |  |  |
|    | Q                              | uit           |  |  |
|    |                                |               |  |  |

## 1. Need for Data Processing

- One of the main objectives of science is to predict future values y of physical quantities:
  - in meteorology, we need to predict future weather;
  - in airplane control, we need to predict the location and the velocity of the plane under current control.
- To make this prediction:
  - we need to know the relation  $y = f(x_1, \ldots, x_n)$  between y and related quantities  $x_1, \ldots, x_n$ ;
  - then, we measure or estimate  $x_1, \ldots, x_n$ ;
  - finally, we use the results  $\tilde{x}_i$  of measurement (or estimation) to compute an estimate

$$\widetilde{y} = f(\widetilde{x}_1, \ldots, \widetilde{x}_n).$$

• This computation of  $\tilde{y}$  is an important case of *data* processing.



- 2. Need to Take Uncertainty Into Account When Processing Data
  - Measurement are never absolutely accurate: in general,

$$\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i - x_i \neq 0$$

- As a result, the estimate  $\tilde{y} = f(\tilde{x}_1, \dots, \tilde{x}_n)$  is, in general, different from the ideal value  $y = f(x_1, \dots, x_n)$ .
- To estimate the accuracy  $\Delta y \stackrel{\text{def}}{=} \widetilde{y} y$ , we need to have some information about the measurement errors  $\Delta x_i$ .
- Traditional engineering approach assumes that we know the probability distribution of each  $\Delta x_i$ .
- Often,  $\Delta x_i \sim N(0, \sigma_i)$ , and different  $\Delta x_i$  are assumed to be independent.
- In such situations, our goal is to find the probability distribution for  $\Delta y$ .

| Int | Introduction |         |  |
|-----|--------------|---------|--|
| Нc  | ow to Get    | More    |  |
| Ha  | ow to Spee   | ed Up   |  |
| Тс  | owards a B   | etter   |  |
| Ho  | ow General   | Can We  |  |
| Pr  | oofs         |         |  |
|     |              |         |  |
|     | Home         | Page    |  |
|     | Title        | Page    |  |
|     |              |         |  |
|     | ••           | ••      |  |
|     | •            |         |  |
|     |              |         |  |
|     | Page 4       | 4 of 72 |  |
|     | Go l         | Back    |  |
|     |              |         |  |
|     | Full Screen  |         |  |
|     | Full S       | Screen  |  |
|     |              | ose     |  |
|     | Clo          |         |  |

- 3. Cases of Interval and Fuzzy Uncertainty
  - Often, we only know the upper bound  $\Delta_i: |\Delta x_i| \leq \Delta_i$ .
  - Then, the only information about the  $x_i$  is that

$$x_i \in \mathbf{x}_i \stackrel{\text{def}}{=} [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$$

- Different  $x_i \in \mathbf{x}_i$  lead, in general, to different  $y = f(x_1, \dots, x_n).$
- We want to find the range  $\mathbf{y}$  of possible values of y:

$$\mathbf{y} = \{ f(x_1, \dots, x_n) : x_1 \in \mathbf{x}_1, \dots, x_n \in \mathbf{x}_n \}.$$

- To gauge the accuracy of expert estimates, it is reasonable to use fuzzy techniques, i.e., to describe:
  - for each possible value  $x_i$ ,
  - the degree  $\mu_i(x_i)$  to which  $x_i$  is possible.

- 4. Measurement and Estimation Inaccuracies Are Usually Small
  - In many practical situations, the measurement and estimation inaccuracies  $\Delta x_i$  are relatively small.
  - Then, we can safely ignore terms which are quadratic (or of higher order) in terms of  $\Delta x_i$ :

$$\Delta y = \tilde{y} - y = f(\tilde{x}_1, \dots, \tilde{x}_n) - f(\tilde{x}_1 - \Delta x_1, \dots, \tilde{x}_n - \Delta x_n) = \sum_{i=1}^n c_i \cdot \Delta x_i, \text{ where } c_i = \frac{\partial f}{\partial x_i}.$$

• If needed, the derivative can be estimated by numerical differentiation

$$c_i \approx \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h}.$$

## 5. Case of Interval Uncertainty

- Let us consider the case when  $\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$ .
- In this case,  $\mathbf{y} = [\widetilde{y} \Delta, \widetilde{y} + \Delta]$ , where  $\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i$ .
- Sometimes, we have explicit expressions or efficient algorithms for the partial derivatives  $c_i$ .
- Often, however, we use proprietary software in our computations.
- Then, we cannot use differentiation formulas, but we can use numerical differentiation.
- Problem: We need n + 1 calls to f, to compute  $\tilde{y}$  and n values  $c_i$ .
- When f is time-consuming and n is large, this takes too long.



## 6. A Faster Method: Cauchy-Based Monte-Carlo

- *Idea:* use Cauchy distribution  $\rho_{\Delta}(x) = \frac{\Delta}{\pi} \cdot \frac{1}{1 + x^2/\Delta^2}$ .
- Why: when  $\Delta x_i \sim \rho_{\Delta_i}(x)$  are indep., then  $\Delta y = \sum_{i=1}^n c_i \cdot \Delta x_i \sim \rho_{\Delta}(x)$ , with  $\Delta = \sum_{i=1}^n |c_i| \cdot \Delta_i$ .
- Thus, we simulate  $\Delta x_i^{(k)} \sim \rho_{\Delta_i}(x)$ ; then,  $\Delta y^{(k)} \stackrel{\text{def}}{=} \widetilde{y} - f(\widetilde{x}_1 - \Delta x_1^{(k)}, \ldots) \sim \rho_{\Delta}(x).$
- Maximum Likelihood method can estimate  $\Delta$ :  $\prod_{k=1}^{N} \rho_{\Delta}(\Delta y^{(k)}) \to \max, \text{ so } \sum_{k=1}^{N} \frac{1}{1 + (\Delta y^{(k)})^2 / \Delta^2} = \frac{N}{2}.$
- To find  $\Delta$  from this equation, we can use, e.g., the bisection method for  $\underline{\Delta} = 0$  and  $\overline{\Delta} = \max_{1 \le k \le N} |\Delta y^{(k)}|$ .

| Introduction             |                 |  |  |
|--------------------------|-----------------|--|--|
| How to Get               | low to Get More |  |  |
| low to Speed Up          |                 |  |  |
| Towards a B              | etter           |  |  |
| low General Can We       |                 |  |  |
| Proofs                   |                 |  |  |
|                          |                 |  |  |
| Home                     | e Page          |  |  |
| Title                    | Page            |  |  |
| Title Page               |                 |  |  |
| ••                       | ••              |  |  |
| ••                       | •               |  |  |
|                          |                 |  |  |
| Page 8                   |                 |  |  |
| Page of Go I             | 3 of 72         |  |  |
| Page &<br>Go I<br>Full S | Back            |  |  |

## 7. Monte-Carlo: Successes and Limitations

- Fact: for Monte-Carlo, accuracy is  $\varepsilon \sim 1/\sqrt{N}$ .
- Good news: the number N of calls to f depends only the desired accuracy  $\varepsilon$ .
- *Example:* to find  $\Delta$  with accuracy 20% and certainty 95%, we need N = 200 iterations.
- *Limitation:* this method is *not realistic*; indeed:
  - we know that  $\Delta x_i$  is *inside*  $[-\Delta_i, \Delta_i]$ , but
  - Cauchy-distributed variable has a high probability to be *outside* this interval.
- *Natural question:* is it a limitation of our method, or of a problem itself?



8. Fuzzy Case: A Problem

$$\begin{array}{c} \underline{\mu_1(x_1)} \\ \underline{\mu_2(x_2)} \\ \\ \\ \underline{\mu_n(x_n)} \end{array} \qquad f \qquad \underline{\mu} = f(\mu_1, \dots, \mu_n) \\ \end{array}$$

- Given: an algorithm  $y = f(x_1, \ldots, x_n)$  and n fuzzy numbers  $\mu_i(x_i)$ .
- Compute:  $\mu(y) = \max_{x_1, \dots, x_n: f(x_1, \dots, x_n) = y} \min(\mu_1(x_1), \dots, \mu_n(x_n)).$
- Motivation: y is a possible value of  $Y \leftrightarrow \exists x_1, \ldots, x_n$  s.t. each  $x_i$  is a possible value of  $X_i$  and  $f(x_1, \ldots, x_n) = y$ .
- Details: "and" is min,  $\exists$  ("or") is max, hence

$$\mu(y) = \max_{x_1, \dots, x_n} \min(\mu_1(x_1), \dots, \mu_n(x_n), t(f(x_1, \dots, x_n) = y)),$$
  
where  $t(\text{true}) = 1$  and  $t(\text{false}) = 0.$ 

- 9. Fuzzy Case: Reduction to Interval Computations
  - Given: an algorithm  $y = f(x_1, \ldots, x_n)$  and n fuzzy numbers  $X_i$  described by membership functions  $\mu_i(x_i)$ .
  - Compute:  $Y = f(X_1, \ldots, X_n)$ , where Y is defined by Zadeh's extension principle:

 $\mu(y) = \max_{x_1, \dots, x_n : f(x_1, \dots, x_n) = y} \min(\mu_1(x_1), \dots, \mu_n(x_n)).$ 

• *Idea:* represent each  $X_i$  by its  $\alpha$ -cuts

 $X_i(\alpha) = \{x_i : \mu_i(x_i) \ge \alpha\}.$ 

- Advantage: for continuous f, for every  $\alpha$ , we have  $Y(\alpha) = f(X_1(\alpha), \dots, X_n(\alpha)).$
- Resulting algorithm: for  $\alpha = 0, 0.1, 0.2, ..., 1$  apply interval computations techniques to compute  $Y(\alpha)$ .

| ,                  |                              |                   |  |
|--------------------|------------------------------|-------------------|--|
| In                 | troduction                   |                   |  |
| Ha                 | ow to Get                    | More              |  |
| Н                  | low to Speed Up              |                   |  |
| T                  | owards a E                   | Pattor            |  |
| 10                 | warus a c                    | eller             |  |
| How General Can We |                              |                   |  |
| Pr                 | roofs                        |                   |  |
|                    |                              |                   |  |
|                    | Ноте                         | e Page            |  |
|                    | Tale                         | Dama              |  |
|                    | I Itie                       | Page              |  |
|                    |                              |                   |  |
|                    | ••                           | <b>&gt;&gt;</b>   |  |
|                    | 44                           | ••                |  |
|                    | ••                           | >>                |  |
|                    | •                            |                   |  |
|                    | •                            |                   |  |
|                    | ◀<br>Page 1                  |                   |  |
|                    | Page 1<br>Go                 | 1 of 72<br>Back   |  |
|                    | Page 1<br>Go                 | 11 of 72          |  |
|                    | Page 1<br>Go<br>Full S       | 1 of 72<br>Back   |  |
|                    | Page 1<br>Go<br>Full S       | ■ I of 72<br>Back |  |
|                    | Page 1<br>Go<br>Full 5<br>CI | ■ I of 72<br>Back |  |

## 10. Open Problems

- In engineering applications, we want methods for estimating uncertainty which are:
  - *accurate* this is most important in most engineering applications;
  - *fast*: this is important in some engineering applications where we need real-time computations,
  - understandable to engineers otherwise, engineers will be reluctant to use them, and
  - sufficiently general- so that they can be applied in all kinds of situations.
- It is thus desirable to design more accurate, faster, more understandable, and/or more general methods.



## 11. What We Do in This Thesis

- First, we show how to make the current methods more accurate.
- Then, we show how to make these methods faster.
- After that, we show how to make these methods more understandable to engineers.
- Finally, we analyze how to make these methods more general.
- We also describe remaining open problems and our plan for future work.



Part II

How to Get More Accurate Estimates – by Properly Taking Model Inaccuracy into Account



## 12. Linearization-Based Algorithm: Reminder

- We know: an algorithm  $f(x_1, \ldots, x_n)$  and values  $\widetilde{y}_i$  and  $\Delta_i$ .
- We need to find: the range of values  $f(x_1, \ldots, x_n)$  when  $x_i \in [\tilde{x}_i \Delta_i, \tilde{x}_i + \Delta_i].$
- Algorithm:
  - 1) first, we compute  $\tilde{y} = f(\tilde{x}_1, \dots, \tilde{x}_n)$ ; 2) then, for each *i* from 1 to *n*, we compute

$$y_i = f(\widetilde{x}_1, \ldots, \widetilde{x}_{i-1}, \widetilde{x}_i + \Delta_i, \widetilde{x}_{i+1}, \ldots, \widetilde{x}_n);$$

3) after that, we compute  $\overline{y} = \widetilde{y} + \sum_{i=1}^{n} |y_i - \widetilde{y}|$  and

$$\underline{y} = \widetilde{y} - \sum_{i=1}^{n} |y_i - \widetilde{y}|$$

| In | troduction                   |                 |  |
|----|------------------------------|-----------------|--|
|    | liouuction                   |                 |  |
| H  | ow to Get                    | More            |  |
| Н  | ow to Spe                    | ed Up           |  |
|    | Towards a Better             |                 |  |
| Т  | owards a B                   | Setter          |  |
| Н  | ow Genera                    | I Can We        |  |
| Pi | roofs                        |                 |  |
|    |                              |                 |  |
|    | Ноте                         | e Page          |  |
|    |                              |                 |  |
|    | Title                        | Page            |  |
|    | Title Page                   |                 |  |
|    |                              |                 |  |
|    | 44                           | ••              |  |
|    | ••                           |                 |  |
|    | ••                           | ++              |  |
|    | •                            |                 |  |
|    | •                            |                 |  |
|    | ◀<br>Page 1                  |                 |  |
|    | Page 1<br>Go                 | 5 of 72<br>Back |  |
|    | Page 1<br>Go                 | 5 of 72         |  |
|    | Page 1<br>Go<br>Full S       | 5 of 72<br>Back |  |
|    | Page 1<br>Go<br>Full S       | 5 of 72<br>Back |  |
|    | Page 1<br>Go<br>Full 5<br>CI | 5 of 72<br>Back |  |

## 13. Taking Model Inaccuracy into Account

- We rarely know the exact dependence  $y = f(x_1, \ldots, x_n)$ .
- We have an approx. model  $F(x_1, \ldots, x_n)$  w/known accuracy  $\varepsilon$ :  $|F(x_1, \ldots, x_n) f(x_1, \ldots, x_n)| \le \varepsilon$ .
- We know: an algorithm  $F(x_1, \ldots, x_n)$ , accuracy  $\varepsilon$ , values  $\widetilde{x}_i$  and  $\Delta_i$ .
- Find: the range  $\{f(x_1,\ldots,x_n): x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i]\}.$
- If we use the approximate model in our estimate, we get  $\overline{Y} = \widetilde{Y} + \sum_{i=1}^{n} |Y_i \widetilde{Y}|.$
- Here,  $|\widetilde{Y} \widetilde{y}| \leq \varepsilon$  and  $|Y_i y_i| \leq \varepsilon$ , so  $|\overline{y} \overline{Y}| \leq (2n+1) \cdot \varepsilon$ .
- Thus, we arrive at the following algorithm.



## 14. Resulting Algorithm

- We know: an algorithm  $F(x_1, \ldots, x_n)$ , accuracy  $\varepsilon$ , values  $\widetilde{x}_i$  and  $\Delta_i$ .
- Find: the range  $\{f(x_1,\ldots,x_n): x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i]\}.$
- Algorithm:

1) compute  $\widetilde{Y} = Y(\widetilde{x}_1, \dots, \widetilde{x}_n)$  and  $Y_i = F(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + \Delta_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n).$ 2) compute  $\overline{B} = \widetilde{Y} + \sum_{i=1}^n |Y_i - \widetilde{Y}| + (2n+1) \cdot \varepsilon$  and  $\underline{B} = \widetilde{Y} - \sum_{i=1}^n |Y_i - \widetilde{Y}| - (2n+1) \cdot \varepsilon.$ 

- Problem: when n is large, then, even for reasonably small inaccuracy  $\varepsilon$ , the value  $(2n + 1) \cdot \varepsilon$  is large.
- What we do: we show how we can get better estimates for  $\overline{y}$ .

| In | troduction                     |                 |  |
|----|--------------------------------|-----------------|--|
| Н  | ow to Get More                 |                 |  |
| Н  | low to Speed Up                |                 |  |
| Та | Towards a Better               |                 |  |
| Н  | How General Can We             |                 |  |
| Pr | roofs                          |                 |  |
|    | Ноте                           | e Page          |  |
|    | Title                          | Page            |  |
|    | Title Page                     |                 |  |
|    | 44                             | ••              |  |
|    | ••                             | ••              |  |
|    |                                |                 |  |
|    | ◀<br>Page 1                    |                 |  |
|    | Page 1<br>Go                   | 7 of 72         |  |
|    | Page 1<br>Go I<br>Full S       | 7 of 72<br>Back |  |
|    | Page 1<br>Go I<br>Full 5<br>Cl | 7 of 72<br>Back |  |

## 15. How to Get Better Estimates: Idea

- One possible source of model inaccuracy is discretization (e.g., FEM).
- When we select a different combination of parameters, we get an *unrelated* value of inaccuracy.
- So, let's consider approx. errors  $\Delta y \stackrel{\text{def}}{=} F(x_1, \dots, x_n) f(x_1, \dots, x_n)$  as *independent* random variables.
- What is a probability distribution for these random variables? We know that  $\Delta y \in [-\varepsilon, \varepsilon]$ .
- We do not have any reason to assume that some values from this interval are more probable than others.
- So, it is reasonable to assume that all the values are equally probable: a uniform distribution.
- For this uniform distribution, the mean is 0, and the standard deviation is  $\sigma = \frac{\varepsilon}{\sqrt{3}}$ .

| In | troduction                     |                 |  |
|----|--------------------------------|-----------------|--|
|    | low to Get More                |                 |  |
| н  |                                |                 |  |
| H  | low to Speed Up                |                 |  |
| Та | Towards a Better               |                 |  |
| H  | How General Can We             |                 |  |
| Pı | roofs                          |                 |  |
|    |                                |                 |  |
|    | Ноте                           | e Page          |  |
|    | Title                          | Page            |  |
|    | The                            | 1 age           |  |
|    |                                |                 |  |
|    | ••                             | ••              |  |
|    | 4                              | ••              |  |
|    | ••                             |                 |  |
|    | •                              |                 |  |
|    | ◀<br>Page 1                    | ▶ 8 of 72       |  |
|    | ◀<br>Page 1                    |                 |  |
|    | Page 1<br>Go i                 | ▶ 8 of 72       |  |
|    | Page 1<br>Go I<br>Full 5       | 8 of 72<br>Back |  |
|    | Page 1<br>Go I<br>Full 5       | 8 of 72         |  |
|    | Page 1<br>Go I<br>Full S<br>Cl | 8 of 72<br>Back |  |

#### 16. How to Get a Better Estimate for $\tilde{y}$

- In our main algorithm, we apply the computational model F to n + 1 different tuples.
- Let's also compute  $M \stackrel{\text{def}}{=} F(\widetilde{x}_1 \Delta_1, \dots, \widetilde{x}_n \Delta_n).$
- In linearized case,  $\widetilde{y} + \sum_{i=1}^{n} y_i + m = (n+2) \cdot \widetilde{y}$ , so  $\widetilde{y} = 1 \quad \left( \sum_{\widetilde{u} \perp} \sum_{i=1}^{n} u_i + m \right)$  and we can estimate  $\widetilde{y}$  as

$$\overline{n+2} \cdot \left( y + \sum_{i=1}^{n} y_i + m \right)$$
, and we can estimate  $y$ 

$$\widetilde{Y}_{\text{new}} = \frac{1}{n+2} \cdot \left( \widetilde{Y} + \sum_{i=1}^{n} Y_i + m \right).$$

• Here, 
$$\Delta \widetilde{y}_{\text{new}} = \frac{1}{n+2} \cdot \left( \Delta \widetilde{y} + \sum_{i=1}^{n} \Delta y_i + \Delta m \right)$$
, so its variance is  $\sigma^2 \left[ \widetilde{Y}_{\text{new}} \right] = \frac{\varepsilon^2}{3 \cdot (n+2)} \ll \frac{\varepsilon^2}{3} = \sigma^2 \left[ \widetilde{Y} \right]$ .

## 17. Let Us Use $\widetilde{Y}_{new}$ When Estimating $\overline{y}$

- Let us compute  $\overline{Y}_{\text{new}} = \widetilde{Y}_{\text{new}} + \sum_{i=1}^{n} |Y_i \widetilde{Y}_{\text{new}}|.$
- Here, when  $s_i \in \{-1, 1\}$  are the signs of  $y_i \tilde{y}$ , we get:

$$\overline{y} = \widetilde{y} + \sum_{i=1}^{n} s_i \cdot (y_i - \widetilde{y}) = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \widetilde{y} + \sum_{i=1}^{n} s_i \cdot y_i.$$

• Thus, 
$$\Delta \overline{y}_{\text{new}} = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \Delta \widetilde{y}_{\text{new}} + \sum_{i=1}^{n} s_i \cdot \Delta y_i$$
, so

$$\sigma^2 = \left(1 - \sum_{i=1}^n s_i\right)^2 \cdot \frac{\varepsilon^2}{3 \cdot (n+2)} + \sum_{i=1}^n \frac{\varepsilon^2}{3}.$$

• Here, 
$$|s_i| \le 1$$
, so  $\left|1 - \sum_{i=1}^n s_i\right| \le n+1$ , and  
 $\sigma^2 \le \frac{\varepsilon^2}{3} \cdot (2n+1).$ 

18. Using  $\widetilde{Y}_{\text{new}}$  (cont-d)

• We have 
$$\Delta \overline{y}_{\text{new}} = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \Delta \widetilde{y}_{\text{new}} + \sum_{i=1}^{n} s_i \cdot \Delta y_i.$$

• Due to the Central Limit Theorem,  $\Delta \overline{y}_{\text{new}}$  is  $\approx$  normal.

• We know that 
$$\sigma^2 \leq \frac{\varepsilon^2}{3} \cdot (2n+1).$$

• Thus, with certainty depending on  $k_0$ , we have

$$\overline{y} \le \overline{Y}_{\text{new}} + k_0 \cdot \sigma \le \overline{Y}_{\text{new}} + k_0 \cdot \frac{\varepsilon}{\sqrt{3}} \cdot \sqrt{2n+1}$$
:

• with certainty 95% for  $k_0 = 2$ ,

- with certainty 99.9% for  $k_0 = 3$ , etc.
- Here, inaccuracy grows as  $\sqrt{2n+1}$ .
- This is much better than in the traditional approach, where it grows  $\sim 2n + 1$ .

## 19. Resulting Algorithm

- We know:  $F(x_1, \ldots, x_n)$ ,  $\varepsilon$ ,  $\widetilde{x}_i$  and  $\Delta_i$ .
- We want: to find the range of  $f(x_1, \ldots, x_n)$  when  $x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i].$
- Algorithm:

1) compute  $\widetilde{Y} = F(\widetilde{x}_1, \ldots, \widetilde{x}_n)$ .  $M = F(\widetilde{x}_1 - \Delta_1, \ldots, \widetilde{x}_n - \Delta_n)$ , and  $Y_i = F(\widetilde{x}_1, \ldots, \widetilde{x}_{i-1}, \widetilde{x}_i + \Delta_i, \widetilde{x}_{i+1}, \ldots, \widetilde{x}_n);$ 2) compute  $\widetilde{Y}_{\text{new}} = \frac{1}{n+2} \cdot \left( \widetilde{Y} + \sum_{i=1}^{n} Y_i + M \right),$  $\overline{b} = \widetilde{Y}_{\text{new}} + \sum_{i=1}^{n} \left| Y_i - \widetilde{Y}_{\text{new}} \right| + k_0 \cdot \sqrt{2n+1} \cdot \frac{\varepsilon}{\sqrt{2}};$  $\underline{b} = \widetilde{Y}_{\text{new}} - \sum_{i=1}^{n} \left| Y_i - \widetilde{Y}_{\text{new}} \right| - k_0 \cdot \sqrt{2n+1} \cdot \frac{\varepsilon}{\sqrt{3}}.$ 



- 20. A Similar Improvement Is Possible for the Cauchy Method
  - In the Cauchy method, we compute  $\widetilde{Y}$  and the values

$$Y^{(k)} = F(\widetilde{x}_1 + \eta_1^{(k)}, \dots, \widetilde{x}_n + \eta_n^{(k)}).$$

• We can then compute the improved estimate for  $\widetilde{y}$ , as:

$$\widetilde{Y}_{\text{new}} = \frac{1}{N+1} \cdot \left( \widetilde{Y} + \sum_{k=1}^{N} Y^{(k)} \right)$$

• We can now use this improved estimate when estimating the differences  $\Delta y^{(k)}$ : namely, we compute

$$Y^{(k)} - \widetilde{Y}_{\text{new}}$$

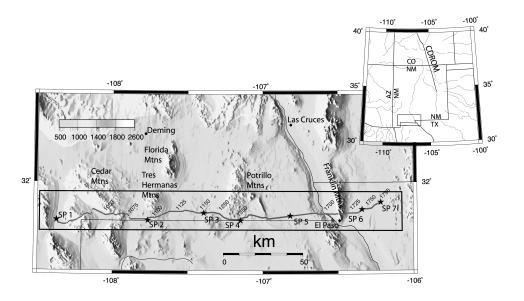
- 21. Experimental Testing: Seismic Inverse Problem in Geophysics
  - *Problem:* reconstruct the velocity of sound  $v_i$  at different spatial locations and at different depths.
  - What we know: the travel-times  $t_j$  of a seismic signal from the set-up explosion to seismic stations.
  - Hole's iterative algorithm:
    - we start with geology-motivated values  $v_i^{(1)}$ ;
    - based on the current approximation  $v_i^{(k)}$ , we estimate the travel times  $t_i^{(k)}$ ;

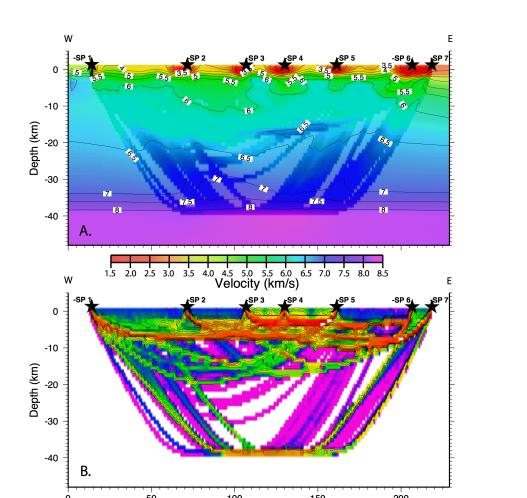
- update 
$$v_i$$
:  $\frac{1}{v_i^{(k+1)}} = \frac{1}{v_i^{(k)}} + \frac{1}{n_i} \cdot \sum_j \frac{t_j - t_j^{(k)}}{L_j}.$ 

• Using  $\widetilde{Y}_{\text{new}}$  decreased the inaccuracy  $\sigma$ , on average, by 15%;  $\sigma$  increased only in one case (only by 7%).

| In                 | ntroduction<br>How to Get More |                  |  |
|--------------------|--------------------------------|------------------|--|
| Но                 | How to Get More                |                  |  |
| На                 | How to Speed Up                |                  |  |
| Тс                 | Towards a Better               |                  |  |
| How General Can We |                                |                  |  |
| Pr                 | oofs                           |                  |  |
|                    |                                |                  |  |
|                    | Ноте                           | e Page           |  |
|                    | <b>T</b> :1                    | 0                |  |
|                    | l itle                         | Page             |  |
|                    | Title Page                     |                  |  |
|                    |                                |                  |  |
|                    | 44                             | ••               |  |
|                    | 44                             |                  |  |
|                    | ••                             | ••               |  |
|                    | •                              |                  |  |
|                    | ◀<br>Page 2                    |                  |  |
|                    | Page 2     Go                  | 14 of 72<br>Back |  |
|                    | Page 2     Go                  | 24 of 72         |  |
|                    | A     Page 2     Go     Full ≤ | 14 of 72<br>Back |  |
|                    | Page 2 Go Full 3 CI            | A of 72<br>Back  |  |

# 22. Case Study: Seismic Inverse Problem in the Geosciences







## 23. Can We Further Improve the Accuracy?

- The inaccuracy  $Y \neq y$  is caused by using elements of finite size h.
- This inaccuracy is proportional to h.
- If we decrease h to h', we thus need  $K \stackrel{\text{def}}{=} \frac{h^3}{(h')^3}$  more cells, so we need K times more computations.
- Thus, the accuracy decreases as  $\sqrt[3]{K}$ .
- New idea: select K small vectors  $\left(\Delta_1^{(k)}, \ldots, \Delta_n^{(k)}\right)$  which add up to 0, and estimate  $\widetilde{y}$  as

$$Y_K(x_1,...,x_n) = \frac{1}{K} \cdot \sum_{k=1}^K F\left(x_1 + \Delta_1^{(k)},...,x_n + \Delta_n^{(k)}\right).$$

• Averaging K independent random errors decreases the inaccuracy by a factor of  $\sqrt{K}$ , much faster than  $\sqrt[3]{K}$ .

| Int | troduction                    | I               |  |
|-----|-------------------------------|-----------------|--|
| Ho  | How to Get More               |                 |  |
| Ho  | ow to Spe                     | ed Up           |  |
| То  | owards a E                    | letter          |  |
| Ho  | How General Can We            |                 |  |
| Pr  | oofs                          |                 |  |
|     | Home                          | Page            |  |
|     |                               |                 |  |
|     | Title                         | Page            |  |
|     |                               |                 |  |
|     | ••                            | ••              |  |
|     | ••                            | ••              |  |
| [   | •                             |                 |  |
|     | •                             |                 |  |
|     | ↓ Page 2                      |                 |  |
|     | Page 2<br>Go I                | 7 of 72         |  |
|     | A<br>Page 2<br>Go I<br>Full S | 7 of 72<br>Back |  |
|     | Page 2 Go I Full S Ch         | 7 of 72<br>Back |  |

Part III

How to Speed Up Computations – by Processing Different Types of Uncertainty Separately



## 24. Cases for Which a Speed-Up Is Possible

- Sometimes, all membership functions are "of the same type":  $\mu(z) = \mu_0(k \cdot z)$  for some symmetric  $\mu_0(z)$ .
- Example: for triangular functions,

$$\mu_0(z) = \max(1 - |z|, 0).$$

• In this case,  $\mu(z) \ge \alpha$  is equivalent to  $\mu_0(k \cdot z) \ge \alpha$ , so  ${}^{\alpha}\Delta_0 = k \cdot {}^{\alpha}\Delta$  and  ${}^{0}\Delta_0 = k \cdot {}^{0}\Delta$ .

• Thus, 
$${}^{\alpha}\Delta = f(\alpha) \cdot {}^{0}\Delta$$
, where  $f(\alpha) \stackrel{\text{def}}{=} \frac{{}^{\alpha}\Delta_{0}}{{}^{0}\Delta_{0}}$ 

- For example, for a triangular membership function, we have  $f(\alpha) = 1 \alpha$ .
- So, if we know the type  $\mu_0$  (hence  $f(\alpha)$ ), and we know the 0-cut, we can compute all  $\alpha$ -cuts as  ${}^{\alpha}\Delta = f(\alpha) \cdot {}^{0}\Delta$ .
- So, if  $\mu_i(\Delta x_i)$  are of the same type, then for all  $\alpha$ , we have  ${}^{\alpha}\Delta_i = f(\alpha) \cdot {}^{0}\Delta_i$



## 25. When a Speed-Up Is Possible (cont-d)

• We know that 
$${}^{\alpha}\Delta = \sum_{i=1}^{n} |c_i| \cdot {}^{\alpha}\Delta_i.$$

• For 
$${}^{\alpha}\Delta_i = f(\alpha) \cdot {}^{0}\Delta_i$$
, we get

$${}^{\alpha}\Delta = \sum_{i=1}^{n} |c_i| \cdot f(\alpha) \cdot {}^{0}\Delta_i.$$

• So, 
$${}^{\alpha}\Delta = f(\alpha) \cdot \sum_{i=1}^{n} |c_i| \cdot {}^{0}\Delta_i = f(\alpha) \cdot {}^{0}\Delta.$$

- Thus, if all  $\mu(x)$  are of the same type  $\mu_0(z)$ , there is no need to compute  ${}^{\alpha}\Delta$  eleven times:
  - it is sufficient to compute  ${}^{0}\Delta$ ;
  - to find all other values  ${}^{\alpha}\Delta$ , we simply multiply  ${}^{0}\Delta$  by the factors  $f(\alpha)$  corresponding to  $\mu_0(z)$ .

## 26. A More General Case

- A more general case is:
  - when we have a list of T different types of uncertainty – i.e., types of membership functions, and
  - each approximation error  $\Delta x_i$  consists of  $\leq T$  components of the corresponding type t:

$$\Delta x_i = \sum_{t=1}^T \Delta x_{i,t}$$

- For example:
  - type t = 1 may correspond to intervals (which are, of course, a particular case of fuzzy uncertainty),
  - type t = 2 may correspond to triangular membership functions, etc.

## 27. How This Case Is Processed Now

- First stage:
  - we use the known membership functions  $\mu_{i,t}(\Delta x_{i,t})$
  - to find the memberships functions  $\mu_i(\Delta x_i)$  that correspond to the sum  $\Delta x_i$ .
- Second stage: we use  $\mu_i(\Delta x_i)$  to compute the desired membership function  $\mu(\Delta y)$ .
- *Problem:* on the second stage, we apply the above formula eleven times:

$${}^{\alpha}\Delta = \sum_{i=1}^{n} |c_i| \cdot {}^{\alpha}\Delta_i$$

| In | troduction             |                  |  |
|----|------------------------|------------------|--|
| Ha | ow to Get More         |                  |  |
| Ha | ow to Spe              | ed Up            |  |
| Тс | owards a E             | Better           |  |
| Н  | ow Genera              | l Can We         |  |
| Pr | roofs                  |                  |  |
|    |                        |                  |  |
|    | Home                   | e Page           |  |
|    |                        |                  |  |
|    | Title                  | Page             |  |
|    | Title Page             |                  |  |
|    | ••                     | ••               |  |
|    | ••                     | ••               |  |
|    | ••                     |                  |  |
|    | •                      |                  |  |
|    | •                      |                  |  |
|    | <b>↓</b><br>Page 3     |                  |  |
|    | <b>↓</b><br>Page 3     | 32 of 72         |  |
|    | Page 3<br>Go           | 32 of 72         |  |
|    | Page 3<br>Go<br>Full 3 | 32 of 72<br>Back |  |
|    | Page 3<br>Go<br>Full : | Back             |  |

## 28. Main Idea

• We have 
$$\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$$
, where

$$\Delta x_i = \sum_{t=1}^{I} \Delta x_{i,t}.$$

 $\mathbf{T}$ 

• Thus, 
$$\Delta y = \sum_{i=1}^{n} c_i \cdot \left(\sum_{t=1}^{T} \Delta x_{i,t}\right).$$

- Grouping together all the terms corr. to type t, we get  $\Delta y = \sum_{t=1}^{T} \Delta y_t$ , where  $\Delta y_t \stackrel{\text{def}}{=} \sum_{i=1}^{n} c_i \cdot \Delta x_{i,t}$ .
- For each t, we are combining membership functions of the same type, so it is enough to compute  ${}^{0}\Delta_{t}$ .
- Then, we add the resulting membership functions by adding the corresponding  $\alpha$ -cuts.

## 29. Resulting Algorithm

- Let  $[-^{0}\Delta_{i,t}, {}^{0}\Delta_{i,t}]$  be 0-cuts of the membership functions  $\mu_{i,t}(\Delta x_{i,t})$ .
- Based on these 0-cuts, we compute, for each type t, the values  ${}^{0}\Delta_{t} = \sum_{i=1}^{n} |c_{i}| \cdot {}^{0}\Delta_{i,t}$ .
- Then, for  $\alpha = 0$ ,  $\alpha = 0.1$ , ..., and for  $\alpha = 1.0$ , we compute the values  ${}^{\alpha}\Delta_t = f_t(\alpha) \cdot {}^{0}\Delta_t$ .
- Finally, we add up  $\alpha$ -cuts corresponding to different types t, to come up with the expression  ${}^{\alpha}\Delta = \sum_{t=1}^{T} {}^{\alpha}\Delta_t$ .
- Comment. We can combine the last two steps into a single step:  ${}^{\alpha}\Delta = \sum_{t=1}^{T} f_t(\alpha) \cdot {}^{0}\Delta_t$ .



## 30. The New Algorithm Is Much Faster

• The original algorithm computed the above formula eleven times:

$${}^{\alpha}\Delta = \sum_{i=1}^{n} |c_i| \cdot {}^{\alpha}\Delta_i.$$

- The new algorithm uses the corresponding formula T times, i.e., as many times as there are types.
- All the other computations are much faster, since they do not grow with the input size *n*.
- Thus, if the number T of different types is smaller than eleven, the new methods is much faster.
- Example: for T = 2 types (e.g., intervals and triangular  $\mu(x)$ ), we get a  $\frac{11}{2} = 5.5$  times speedup.



## 31. Conclusions and Future Work

- We can therefore conclude that sometimes, it is beneficial to process different types of uncertainty separately.
- Namely, it is beneficial when we have ten or fewer different types of uncertainty.
- The fewer types of uncertainty we have, the faster the resulting algorithm.
- We plan to test this idea of several actual data processing examples.
- We also plan to extend this idea to other types of uncertainty, in particular, to probabilistic uncertainty.



## Part IV

Towards a Better Understandability of Uncertainty-Estimating Algorithms: Explaining the Need for Non-Realistic Monte-Carlo Simulations

| In | troduction                   |                                                         |
|----|------------------------------|---------------------------------------------------------|
| Н  | ow to Get More               |                                                         |
| Н  | ow to Spee                   | ed Up                                                   |
| Та | owards a B                   | Better                                                  |
| Н  | ow Genera                    | l Can We                                                |
| Pr | roofs                        |                                                         |
|    |                              |                                                         |
|    | Ноте                         | e Page                                                  |
|    | Title                        | Page                                                    |
|    |                              |                                                         |
|    |                              |                                                         |
|    | 44                           | ••                                                      |
|    | ••                           | ••                                                      |
|    | •                            |                                                         |
|    | ◀<br>Page 3                  |                                                         |
|    | Page 3<br>Go                 | ▶ 37 of 72                                              |
|    | Page 3<br>Go<br>Full 5       | Image: Non-State Screen                                 |
|    | Page 3<br>Go<br>Full 5       | AT of 72<br>Back                                        |
|    | Page 3<br>Go<br>Full 5<br>CI | Image: Non-State       N7 of 72       Back       Screen |

#### 32. Formulation of the Problem: Reminder

- *Good news:* Cauchy-based Monte-Carlo method is an efficient way of estimating interval uncertainty.
- *Limitation:* this method is *not realistic*; indeed:
  - we know that  $\Delta x_i$  is *inside*  $[-\Delta_i, \Delta_i]$ , but
  - Cauchy-distributed variable has a high probability to be *outside* this interval.
- *Natural question:* is it a limitation of our method, or of a problem itself?
- *Our answer:* for interval uncertainty, a realistic Monte-Carlo method is not possible.



#### 33. Proof: Case of Independent Variables

• It is sufficient to prove that we cannot get the correct estimate for *one* specific function

 $f(x_1,\ldots,x_n) = x_1 + \ldots + x_n$ , when  $\Delta y = \Delta x_1 + \ldots + \Delta x_n$ .

- When each variables  $\Delta x_i$  is in the interval  $[-\delta, \delta]$ , then the range of  $\Delta y$  is  $[-\Delta, \Delta]$ , where  $\Delta = n \cdot \delta$ .
- In Monte-Carlo,  $\Delta y^{(k)} = \Delta x_1^{(k)} + \ldots + \Delta x_n^{(k)}$ .
- $\Delta_i^{(k)}$  are i.i.d. Due to the Central Limit Theorem, when  $n \to \infty$ , the distribution of the sum tends to Gaussian.
- For a normal distribution, with very high confidence,  $\Delta y \in [\mu - k \cdot \sigma, \mu + k \cdot \sigma].$
- Here,  $\sigma \sim \sqrt{n}$ , so this interval has width  $w \sim \sqrt{n}$ .
- However, the actual range of  $\Delta y$  is  $\sim n \gg w$ . Q.E.D.



#### 34. General Case

• Let's take  $f(x_1, ..., x_n) = s_1 \cdot x_1 + ... + s_n \cdot x_n$ , where  $s_i \in \{-1, 1\}$ .

• Then, 
$$\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i = n \cdot \delta.$$

• Let  $\varepsilon > 0$ ,  $\delta > 0$ , and  $p \in (0, 1)$ . We consider probability distributions P on the set of all vectors

 $(\Delta x_1 \dots, \Delta x_n) \in [-\delta, \delta] \times \dots \times [-\delta, \delta].$ 

• We say that P is a  $(p, \varepsilon)$ -realistic Monte-Carlo estimation (MCE) if for all  $s_i \in \{-1, 1\}$ , we have

 $\operatorname{Prob}(s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 - \varepsilon)) \ge p.$ 

- **Result.** If for every n, we have a  $(p_n, \varepsilon)$ -realistic MCE, then  $p_n \leq \beta \cdot n \cdot c^n$  for some  $\beta > 0$  and c < 1.
- For probability  $p_n$ , we need  $1/p_n \sim c^{-n}$  simulations more than n + 1 for numerical differentiation.

| Int | ntroduction          |                 |  |
|-----|----------------------|-----------------|--|
| Нc  | ow to Get            | More            |  |
| Hc  | ow to Spee           | ed Up           |  |
| То  | wards a B            | letter          |  |
| Нс  | w Genera             | l Can We        |  |
| Pr  | oofs                 |                 |  |
|     |                      |                 |  |
|     | Ноте                 | e Page          |  |
|     | Title                | Page            |  |
|     |                      |                 |  |
|     |                      |                 |  |
|     | 44                   | ••              |  |
| [   | 44                   | ••              |  |
|     | 4                    |                 |  |
|     | 4                    |                 |  |
|     | ◀<br>Page 4          |                 |  |
|     | Page 4               | D of 72<br>Back |  |
|     | Page 4               | • 0 of 72       |  |
|     | ↓ Page 4 Go 1 Full 5 | D of 72<br>Back |  |
|     | Page 4 Go  Full 5 Cl | 0 of 72<br>Back |  |

- 35. Why Cauchy Distribution: Formulation of the Problem
  - We want to find a family of probability distributions with the following property:
    - when independent  $X_1, \ldots, X_n$  have distributions from this family with parameters  $\Delta_1, \ldots, \Delta_n$ ,
    - then each  $Y = c_1 \cdot X_1 + \ldots + c_n \cdot X_n \sim \Delta \cdot X$ , where X corr. to parameter 1, and  $\Delta = \sum_{i=1}^n |c_i| \cdot \Delta_i$ .
  - In particular, for  $\Delta_1 = \ldots = \Delta_n = 1$ , the desired property of this probability distribution is as follows:
    - if we have n independent identically distributed random variables  $X_1, \ldots, X_n$ ,
    - then each  $Y = c_1 \cdot X_1 + \ldots + c_n \cdot X_n$  has the same distribution as  $\Delta \cdot X_i$ , where  $\Delta = \sum_{i=1}^n |c_i|$ .

| In | troduction                   |                   |  |
|----|------------------------------|-------------------|--|
| Ho | ow to Get                    | More              |  |
| Н  | ow to Spee                   | ed Up             |  |
| Тс | owards a B                   | Better            |  |
| Н  | ow Genera                    | l Can We          |  |
| Pr | roofs                        |                   |  |
|    |                              |                   |  |
|    | Ноте                         | e Page            |  |
|    |                              |                   |  |
|    | Title                        | Page              |  |
|    |                              |                   |  |
|    | 44                           | ••                |  |
|    | ••                           | ••                |  |
|    | ••                           | ++                |  |
|    | •                            |                   |  |
|    | ◀<br>Page 4                  |                   |  |
|    | ◀<br>Page 4                  | ▶<br>11 of 72     |  |
|    | Page 4<br>Go                 | ▶<br>11 of 72     |  |
|    | Page 4<br>Go<br>Full 5       | Li of 72<br>Back  |  |
|    | Page 4<br>Go<br>Full 5<br>CI | ► I of 72<br>Back |  |

#### 36. Analysis of the Problem

- For n = 1 and  $c_1 = -1$ , the desired property says that  $-X \sim X$ , the distribution is even.
- A usual way to describe a probability distribution is to use a probability density function  $\rho(x)$ .
- Often, it is convenient to use its Fourier transform the characteristic function  $\chi_X(\omega) \stackrel{\text{def}}{=} E[\exp(i \cdot \omega \cdot X)].$
- When  $X_i$  are independent, then for  $S = X_1 + X_2$ :

$$\chi_{S}(\omega) = E[\exp(\mathbf{i} \cdot \omega \cdot S)] = E[\exp(\mathbf{i} \cdot \omega \cdot (X_{1} + X_{2})] = E[\exp(\mathbf{i} \cdot \omega \cdot X_{1} + \mathbf{i} \cdot \omega \cdot X_{2})] = E[\exp(\mathbf{i} \cdot \omega \cdot X_{1}) \cdot \exp(\mathbf{i} \cdot \omega \cdot X_{2})].$$

• Since  $X_1$  and  $X_2$  are independent,

 $\chi_S(\omega) = E[\exp(\mathbf{i}\cdot\omega\cdot X_1)] \cdot E[\exp(\mathbf{i}\cdot\omega\cdot X_2)] = \chi_{X_1}(\omega) \cdot \chi_{X_2}(\omega).$ 

| Introduction       |
|--------------------|
| How to Get More    |
| How to Speed Up    |
| Towards a Better   |
| How General Can We |
| Proofs             |
|                    |
| Home Page          |
| Title Page         |
| •• >>              |
| •                  |
| Page 42 of 72      |
| Go Back            |
| Full Screen        |
| Close              |
| Quit               |

#### 37. Analysis of the Problem (cont-d)

• Similarly, for 
$$Y = \sum_{i=1}^{n} c_i \cdot X_i$$
, we have  
 $\chi_Y(\omega) = E[\exp(i \cdot \omega \cdot Y)] = E\left[\exp\left(i \cdot \omega \cdot \sum_{i=1}^{n} c_i \cdot X_i\right)\right] = E\left[\prod_{i=1}^{n} \exp(i \cdot \omega \cdot c_i \cdot X_i)\right] = \prod_{i=1}^{n} \chi_X(\omega \cdot c_i).$ 

• The desired property is  $Y \sim \Delta \cdot X$ , so

$$\prod_{i=1}^{n} \chi_X(\omega \cdot c_i) = \chi_{\Delta \cdot X}(\omega) = E[\exp(i \cdot \omega \cdot (\Delta \cdot X))]\chi_X(\omega \cdot \Delta),$$
  
so  $\chi_X(c_1 \cdot \omega) \cdot \ldots \cdot \chi_X(c_n \cdot \omega) = \chi_X((|c_1| + \ldots + |c_n|) \cdot \omega).$ 

• In particular, for n = 1,  $c_1 = -1$ , we get  $\chi_X(-\omega) = \chi_X(\omega)$ , so  $\chi_X(\omega)$  should be an even function.

| In | troduction               |                 |  |
|----|--------------------------|-----------------|--|
| H  | ow to Get More           |                 |  |
| Н  | low to Speed Up          |                 |  |
| Тс | owards a B               | letter          |  |
| Н  | ow Genera                | l Can We        |  |
| Pr | roofs                    |                 |  |
|    | Ноте                     | e Page          |  |
|    | Title                    | Page            |  |
|    |                          |                 |  |
|    | ••                       | ••              |  |
|    | •                        | ++              |  |
|    |                          |                 |  |
|    | ◀<br>Page 4              |                 |  |
|    | Page 4                   | →<br>3 of 72    |  |
|    | Page 4<br>Go I<br>Full 5 | 3 of 72<br>Back |  |

#### 38. Analysis of the Problem (cont-d)

• Reminder:

$$\chi_X(c_1 \cdot \omega) \cdot \ldots \cdot \chi_X(c_n \cdot \omega) = \chi_X((|c_1| + \ldots + |c_n|) \cdot \omega).$$

• For 
$$n = 2$$
,  $c_1 > 0$ ,  $c_2 > 0$ , and  $\omega = 1$ , we get  
 $\chi_X(c_1 + c_2) = \chi_X(c_1) \cdot \chi_X(c_2).$ 

- The characteristic function should be measurable.
- Known: the only measurable functions with this property are  $\chi_X(\omega) = \exp(-k \cdot \omega)$  for some k.
- Due to evenness, for a general  $\omega$ , we get  $\chi_X(\omega) = \exp(-k \cdot |\omega|)$ .
- By applying the inverse Fourier transform, we conclude that X is Cauchy distributed.
- Conclusion: so, only Cauchy distribution works.



Part V

# How General Can We Go: What Is Computable and What Is Not



- 39. Need to Take Uncertainty Into Account When Processing Data: Reminder
  - In practice, we are often interested in a quantity y which is difficult to measure directly.
  - *Examples:* distance to a star, amount of oil in the well, tomorrow's weather.
  - Solution: find easier-to-measure quantities  $x_1, \ldots, x_n$ related to y by a known dependence  $y = f(x_1, \ldots, x_n)$ .
  - Then, we measure  $x_i$  and use measurement results  $\tilde{x}_i$  to compute an estimate  $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$ .
  - Measurements are never absolutely accurate, so even if the model f is exact,  $\tilde{x}_i \neq x_i$  leads to  $\Delta y \stackrel{\text{def}}{=} \tilde{y} - y \neq 0$ .
  - It is important to use information about measurement errors  $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i - x_i$  to estimate the accuracy  $\Delta y$ .

| In | troduction       |                       |  |
|----|------------------|-----------------------|--|
| На | ow to Get        | More                  |  |
| Ha | ow to Spe        | ed Up                 |  |
| Тс | owards a E       | Better                |  |
| Ho | ow Genera        | l Can We              |  |
| Pr | roofs            |                       |  |
|    |                  |                       |  |
|    | Home             | e Page                |  |
|    | Title            | Page                  |  |
|    | •• ••            |                       |  |
|    | ••               | ••                    |  |
|    | ••               | >>                    |  |
|    | •                |                       |  |
|    | •                |                       |  |
|    | ◀<br>Page 4      |                       |  |
|    | Page 4<br>Go     | ▶ 16 of 72            |  |
|    | Page 4 Go Full 5 | ►<br>H6 of 72<br>Back |  |
|    | Page 4 Go Full 5 | 6 of 72<br>Back       |  |

#### 40. We Often Have Imprecise Probabilities

- Usual assumption: we know the probabilities for  $\Delta x_i$ .
- To find them, we measure the same quantities:
  - with our measuring instrument (MI) and
  - with a much more accurate MI, with  $\widetilde{x}_i^{\text{st}} \approx x_i$ .
- In two important cases, this does not work:
  - state-of-the-art measurements, and
  - measurements on the shop floor.
- Then, we have partial information about probabilities.
- Often, all we know is an upper bound  $|\Delta x_i| \leq \Delta_i$ .
- Then, we only know that  $x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i]$  and  $y \in [\underline{y}, \overline{y}] \stackrel{\text{def}}{=} \{f(x_1, \dots, x_n) : x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]\}.$
- Computing  $[\underline{y}, \overline{y}]$  is known as *interval computation*.



#### 41. How Do We Describe Imprecise Probabilities?

- Ultimate goal of most estimates: to make decisions.
- Known: a rational decision-maker maximizes expected utility E[u(y)].
- For smooth  $u(y), y \approx \tilde{y}$  implies that

$$u(y) = u(\widetilde{x}) + (y - \widetilde{y}) \cdot u'(\widetilde{y}) + \frac{1}{2} \cdot (y - \widetilde{y})^2 \cdot u''(\widetilde{y}).$$

- So, to find E[u(y)], we must know moments  $E[(y-\widetilde{y})^k]$ .
- Often, u(x) abruptly changes: e.g., when pollution level exceeds  $y_0$ ; then  $E[u(y)] \sim F(y) \stackrel{\text{def}}{=} \operatorname{Prob}(y \leq y_0)$ .
- From F(y), we can estimate moments, so F(x) is enough.
- Imprecise probabilities mean that we know F(y), we only know bounds  $(p\text{-box}) \underline{F}(y) \leq F(y) \leq \overline{F}(y)$ .



#### 42. What Is Computable?

- Computations with p-boxes are practically important.
- It is thus desirable to come up with efficient algorithms which are as general as possible.
- It is known that too general problems are often *not* computable.
- To avoid wasting time, it is therefore important to find out what *can* be computed.
- At first glance, this question sounds straightforward:
  - to describe a cdf, we can consider a computable function F(x);
  - to describe a p-box, we consider a computable function interval  $[\underline{F}(x), \overline{F}(x)]$ .
- Often, we can do that, but we will show that sometimes, we need to go *beyond* function intervals.



### 43. Reminder: What Is Computable?

- A real number x corresponds to a value of a physical quantity.
- We can measure x with higher and higher accuracy.
- So, x is called *computable* if there is an algorithm, that, given k, produces a rational  $r_k$  s.t.  $|x r_k| \leq 2^{-k}$ .
- A computable function computes f(x) from x.
- We can only use approximations to x.
- So, an algorithm for computing a function can, given k, request a  $2^{-k}$ -approximation to x.
- Most usual functions are thus computable.
- Exception: step-function f(x) = 0 for x < 0 and f(x) = 1 for  $x \ge 0$ .
- Indeed, no matter how accurately we know  $x \approx 0$ , from  $r_k = 0$ , we cannot tell whether x < 0 or  $x \ge 0$ .

|    | Introduction                 |                  |  |
|----|------------------------------|------------------|--|
| In |                              |                  |  |
| Н  | ow to Get More               |                  |  |
| Н  | ow to Speed Up               |                  |  |
| Тс | Towards a Better             |                  |  |
| Н  | ow Genera                    | l Can We         |  |
| Pr | roofs                        |                  |  |
|    |                              |                  |  |
|    | Ноте                         | e Page           |  |
|    | Title                        | Page             |  |
|    | Title Page                   |                  |  |
|    | 44 >>                        |                  |  |
|    | 44                           | ••               |  |
|    | 44                           |                  |  |
|    | ••                           | >>               |  |
|    | •                            |                  |  |
|    | ◀<br>Page 5                  | 50 of 72         |  |
|    | ◀<br>Page 5                  |                  |  |
|    | Page 5<br>Go                 | 50 of 72         |  |
|    | Page 5 Go Full 5             | 50 of 72         |  |
|    | Page 5 Go Full 5             | i0 of 72<br>Back |  |
|    | Page 5<br>Go<br>Full 5<br>CI | i0 of 72<br>Back |  |

## 44. Consequences for Representing a cdf F(x)

- We would like to represent a general probability distribution by its cdf F(x).
- From the purely mathematical viewpoint, this is indeed the most general representation.
- At first glance, it makes sense to consider computable functions F(x).
- For many distributions, e.g., for Gaussian, F(x) is computable.
- However, when x = 0 with probability 1, the cdf F(x) is exactly the step-function.
- And we already know that the step-function is not computable.
- Thus, we need to find an alternative way to represent cdf's beyond computable functions.



#### 45. Back to the Drawing Board

- Each value F(x) is the probability that  $X \leq x$ .
- We cannot empirically find exact probabilities p.
- We can only estimate *frequencies* f based on a sample of size N.
- For large N, the difference  $d \stackrel{\text{def}}{=} p f$  is asymptotically normal, with  $\mu = 0$  and  $\sigma = \sqrt{\frac{p \cdot (1-p)}{N}}$ .
- Situations when  $|d \mu| < 6\sigma$  are negligibly rare, so we conclude that  $|f p| \le 6\sigma$ .
- For large N, we can get  $6\sigma \leq \delta$  for any accuracy  $\delta > 0$ .
- We get a sample  $X_1, \ldots, X_N$ .
- We don't know the exact values  $X_i$ , only measured values  $\widetilde{X}_i$  s.t.  $|\widetilde{X}_i X_i| \leq \varepsilon$  for some accuracy  $\varepsilon$ .
- So, what we have is a frequency  $f = \operatorname{Freq}(\widetilde{X}_i \leq x)$ .



#### 46. Resulting Definition

• Here, 
$$X_i \leq x - \varepsilon \Rightarrow \widetilde{X}_i \leq x \Rightarrow X_i \leq x + \varepsilon$$
, so

 $\operatorname{Freq}(X_i \leq x - \varepsilon) \leq f = \operatorname{Freq}(\widetilde{X}_i \leq x) \leq \operatorname{Freq}(X_i \leq x + \varepsilon).$ 

- Frequencies are  $\delta$ -close to probabilities, so we arrive at the following:
- For every  $x, \varepsilon > 0$ , and  $\delta > 0$ , we get a rational number f such that  $F(x \varepsilon) \delta \le f \le F(x + \varepsilon) + \delta$ .
- This is how we define a computable cdf F(x).
- In the computer, to describe a distribution on an interval  $[\underline{T}, \overline{T}]$ :
  - we select a grid  $x_1 = \underline{T}, x_2 = \underline{T} + \varepsilon, \ldots$ , and
  - we store the corr. frequencies  $f_i$  with accuracy  $\delta$ .
- A class of possible distribution is represented, for each
   ε and δ, by a finite list of such approximations.



#### 47. First Equivalent Definition

- Original:  $\forall x \, \forall \varepsilon_{>0} \, \forall \delta_{>0}$ , we get a rational f such that  $F(x - \varepsilon) - \delta \leq f \leq F(x + \varepsilon) + \delta.$
- Equivalent:  $\forall x \, \forall \varepsilon_{>0} \, \forall \delta_{>0}$ , we get a rational f which is  $\delta$ -close to F(x') for some x' such that  $|x' x| \leq \varepsilon$ .
- Proof of equivalence:

- We know that 
$$F(x+\varepsilon) - F(x+\varepsilon/3) \to 0$$
 as  $\varepsilon \to 0$   
- So, for  $\varepsilon = 2^{-k}$ ,  $k = 1, 2, ...$ , we take  $f$  and  $f'$  s.t.  
 $F(x+\varepsilon/3) - \delta/4 \le f \le F(x+(2/3) \cdot \varepsilon) + \delta/4$   
 $F(x+(2/3) \cdot \varepsilon) - \delta/4 \le f' \le F(x+\varepsilon) + \delta/4$ .

– We stop when f and f' are sufficiently close:

$$|f - f'| \le \delta$$

- Thus, we get the desired f.

| In | troduction |          |
|----|------------|----------|
| Ho | ow to Get  | More     |
| Ho | ow to Spee | ed Up    |
| Тс | owards a B | etter    |
| Ho | ow Genera  | l Can We |
| Pr | oofs       |          |
|    |            |          |
|    | Ноте       | e Page   |
|    |            |          |
|    | Title      | Page     |
|    | ••         | ••       |
|    | •          |          |
|    | Page 5     | 4 of 72  |
|    | Go Back    |          |
|    | Full S     | Screen   |
|    |            |          |
|    | Cle        | ose      |
|    | Q          | uit      |
|    |            |          |

#### 48. Second Equivalent Definition

- We start with pairs  $(x_1, f_1), (x_2, f_2), \ldots$
- When  $f_{i+1} f_i > \delta$ , we add intermediate pairs  $(x_i, f_i + \delta), (x_i, f_i + 2\delta), \dots, (x_i, f_{i+1}).$
- The resulting set of pairs is  $(\varepsilon, \delta)$ -close to the graph  $\{(x, y) : F(x-0) \le y \le F(x)\}$  in Hausdorff metric  $d_H$ .
- (x, y) and (x', y') are  $(\varepsilon, \delta)$ -close if  $|x x'| \le \varepsilon$  and  $|y y'| \le \delta$ .
- The sets S and S' are  $(\varepsilon, \delta)$ -close if:

- for every  $s \in S$ , there is a  $(\varepsilon, \delta)$ -close point  $s' \in S'$ ; - for every  $s' \in S'$ , there is a  $(\varepsilon, \delta)$ -close point  $s \in S$ .

- Compacts with metric  $d_H$  form a computable compact.
- So, F(x) is a monotonic computable object in this compact.



- 49. What Can Be Computed: A Positive Result for the 1D Case
  - Reminder: we are interested in F(x) and  $E_{F(x)}[u(x)]$  for smooth u(x).
  - Reminder: estimate for F(x) is part of the definition.
  - Question: computing  $E_{F(x)}[u(x)]$  for smooth u(x).
  - *Our result:* there is an algorithm that:
    - given a computable  $\operatorname{cdf} F(x)$ ,
    - given a computable function u(x), and
    - given accuracy  $\delta > 0$ ,
    - computes  $E_{F(x)}[u(x)]$  with accuracy  $\delta$ .
  - For computable classes  $\mathcal{F}$  of cdfs, a similar algorithm computes the range of possible values

$$[\underline{u},\overline{u}] \stackrel{\text{def}}{=} \{ E_{F(x)}[u(x)] : F(x) \in \mathcal{F} \}$$

| In | troduction                   |                       |
|----|------------------------------|-----------------------|
| Н  | ow to Get                    | More                  |
| Ha | ow to Spee                   | ed Up                 |
| Тс | owards a B                   | Better                |
| Н  | ow Genera                    | l Can We              |
| Pr | roofs                        |                       |
|    |                              |                       |
|    | Ноте                         | e Page                |
|    | Title                        | Page                  |
|    |                              |                       |
|    | ••                           | <b>&gt;&gt;</b>       |
|    | ••                           | ++                    |
|    | ••                           | ••                    |
|    | •                            | •••<br>••<br>66 of 72 |
|    | ◀<br>Page 5                  |                       |
|    | Page 5<br>Go                 | ▶ 56 of 72            |
|    | Page 5<br>Go<br>Full 5       | 6 of 72<br>Back       |
|    | Page 5<br>Go<br>Full 5       | 6 of 72               |
|    | Page 5<br>Go<br>Full 5<br>CI | 6 of 72<br>Back       |

#### 50. Proof: Main Idea

• Computable functions are computably continuous: for every  $\delta > 0$ , we can compute  $\varepsilon > 0$  s.t.

 $|x - x'| \le \varepsilon \Rightarrow |f(x) - f(x')| \le \delta.$ 

- We select  $\varepsilon$  corr. to  $\delta/4$ , and take a grid with step  $\varepsilon/4$ .
- For each  $x_i$ , the value  $f_i$  is  $(\delta/4)$ -close to  $F(x'_i)$  for some  $x'_i$  which is  $(\varepsilon/4)$ -close to  $x_i$ .
- The function u(x) is  $(\delta/2)$ -close to a piece-wise constant function  $u'(x) = u(x_i)$  for  $x \in [x'_i, x'_{i+1}]$ .

• Thus, 
$$|E[u(x)] - E[u'(x)]| \le \delta/2$$
.

- Here,  $E[u'(x)] = \sum_{i} u(x_i) \cdot (F(x'_{i+1}) F(x'_i)).$
- Here,  $F(x'_i)$  is close to  $f_i$  and  $F(x'_{i+1})$  is close to  $f_{i+1}$ .
- Thus, E[u'(x)] (and hence, E[u(x)]) is computably close to a computable sum  $\sum_{i} u(x_i) \cdot (f_{i+1} f_i)$ .



#### 51. What to Do in a Multi-D Case?

• For each g(x), y,  $\varepsilon > 0$ , and  $\delta > 0$ , we can find a frequency f such that:

 $|P(g(x) \le y') - f| \le \varepsilon$  for some y' s.t.  $|y - y'| \le \delta$ .

• We select an  $\varepsilon$ -net  $x_1, \ldots, x_n$  for X. Then,

$$X = \bigcup_{i} B_{\varepsilon}(x_{i}), \text{ where } B_{\varepsilon}(x) \stackrel{\text{def}}{=} \{x' : d(x, x') \leq \varepsilon\}.$$

- We select  $f_1$  which is close to  $P(B_{\varepsilon'}(x_1))$  for all  $\varepsilon'$  from some interval  $[\underline{\varepsilon}, \overline{\varepsilon}]$  which is close to  $\varepsilon$ .
- We then select  $f_2$  which is close to  $P(B_{\varepsilon'}(x_1) \cup B_{\varepsilon'}(x_2))$ for all  $\varepsilon'$  from some subinterval of  $[\underline{\varepsilon}, \overline{\varepsilon}]$ , etc.
- Then, we get approximations to probabilities of the sets  $B_{\varepsilon}(x_i) (B_{\varepsilon}(x_1) \cup \ldots \cup B_{\varepsilon}(x_{i-1})).$
- This lets us compute the desired values E[u(x)].



## Part VI Conclusions and Future Work



## 52. Conclusions

- In many practical application, we process measurement results and expert estimates.
- Measurements and expert estimates are never absolutely accurate.
- Their result are slightly different from the actual (unknown) values of the corresponding quantities.
- It is therefore desirable to analyze how measurement inaccuracy affects the results of data processing.
- There exist numerous methods for estimating the accuracy of the results of data processing.
- These methods cover different models of inaccuracy: probabilistic, interval, and fuzzy.



## 53. Conclusions (cont-d)

- To be useful in engineering applications, the uncertainty methods should satisfy the following objectives.
- They should provide accurate estimate for the resulting uncertainty.
- They should not take too much computation time.
- They should be understandable to engineers.
- They should be sufficiently general to cover all kinds of uncertainty.



## 54. Conclusions (final)

- In this thesis, on several case studies, we show how we can achieve these four objectives.
- We show that we can get more accurate estimates by properly taking model inaccuracy into account.
- We show that we can speed up computations by processing different types of uncertainty differently.
- We show that we can make uncertainty-estimating algorithms more understandable.
- We also analyze how general uncertainty-estimating algorithms can be.

| In               | troduction      |          |  |
|------------------|-----------------|----------|--|
| Н                | ow to Get More  |          |  |
| Н                | low to Speed Up |          |  |
| Towards a Better |                 |          |  |
| H                | ow Genera       | l Can We |  |
| Pr               | roofs           |          |  |
|                  | Ноте            | e Page   |  |
|                  | Title           | Page     |  |
|                  | 44              | ••       |  |
|                  | •               |          |  |
|                  | Page 62 of 72   |          |  |
|                  | Go Back         |          |  |
|                  | Full S          | Screen   |  |
|                  | СІ              | ose      |  |
|                  | Q               | uit      |  |

#### 55. Future Work

- In our future work, we plan to continue working in these four directions.
- In particular, we plan to extend our speed-up algorithms from fuzzy to probabilistic uncertainty.
- One of the main reasons for estimation and data processing is to make decisions; we thus plan to analyze:
  - how the corresponding uncertainty affects decision making, and
  - what is the best way to make decisions under different types of uncertainty.
- We plan to apply these algorithms to practical engineering problems, e.g., pavement compaction.



## 56. Acknowledgments

I want to express my gratitude to my committee members:

- Vladik Kreinovich, Chair
- Jack Chessa,
- $\bullet$  Aaron Velasco, and
- Piotr Wojciechowski.

| In | ntroduction            |                  |  |
|----|------------------------|------------------|--|
| Н  | low to Get More        |                  |  |
| Н  | low to Speed Up        |                  |  |
| Та | owards a E             | Better           |  |
| Н  | ow Genera              | l Can We         |  |
| Pı | roofs                  |                  |  |
|    |                        |                  |  |
|    | Ноте                   | e Page           |  |
|    | Title                  | Page             |  |
|    |                        |                  |  |
|    | ••                     |                  |  |
|    |                        |                  |  |
|    |                        |                  |  |
|    | •                      |                  |  |
|    |                        | 64 of 72         |  |
|    | Page (                 |                  |  |
|    | Page 6<br>Go           | 54 of 72         |  |
|    | Page (<br>Go<br>Full : | i4 of 72<br>Back |  |
|    | Page (<br>Go<br>Full ( | i4 of 72<br>Back |  |

## Part VII Proofs

| In | troduction            |                     |
|----|-----------------------|---------------------|
| Ho | ow to Get             | More                |
| Ha | ow to Spee            | ed Up               |
| Тс | owards a B            | etter               |
| Ho | ow Genera             | l Can We            |
| Pr | roofs                 |                     |
|    |                       |                     |
|    | Ноте                  | e Page              |
|    |                       |                     |
|    | Title                 | Page                |
|    |                       |                     |
|    | ••                    | ••                  |
|    | 44                    | >>                  |
|    | •                     |                     |
|    | <b>↓</b><br>Page 6    | •                   |
|    | ↓<br>Page 6<br>Go I   | <b>•</b><br>5 of 72 |
|    | ↓<br>Page 6<br>Go I   | 5 of 72<br>Back     |
|    | Page 6 Go I Full 5    | 5 of 72<br>Back     |
|    | Page 6 Go I Full 5 Ch | 5 of 72<br>Back     |

#### 57. Proof of the Main Result from Part 4

- Let us pick some  $\alpha \in (0, 1)$ .
- Let us denote, by m, the number of indices i or which  $s_i \cdot \Delta x_i > \alpha \cdot \delta$ .
- If we have  $s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 \varepsilon)$ , then:
  - for n m indices, we have  $s_i \cdot \Delta x_i \leq \alpha \cdot \delta$  and - for the other m indices, we have  $s_i \cdot \Delta x_i \leq \delta$ .

• Thus, 
$$n \cdot \delta \cdot (1 - \varepsilon) \le \sum_{i=1}^{n} s_i \cdot \Delta x_i \le m \cdot \delta + (n - m) \cdot \alpha \cdot \delta$$
.

• Dividing this inequality by  $\delta$ , we get

$$n \cdot (1 - \varepsilon) \le m + (n - m) \cdot \alpha.$$

• So, 
$$n \cdot (1 - \alpha - \varepsilon) \le m \cdot (1 - \alpha)$$
 and  $m \ge n \cdot \frac{1 - \alpha - \varepsilon}{1 - \alpha}$ .

• So, we have at least  $n \cdot \frac{1 - \alpha - \varepsilon}{1 - \alpha}$  indices for which  $\Delta x_i$  has the same sign as  $s_i$  (and for which  $|\Delta x_i| > \alpha \cdot \delta$ ).



- So, for  $\Delta x_i$  corr. to  $(s_1, \ldots, s_n)$ , at most  $n \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$  indices have a different sign than  $s_i$ .
- It is possible that the same tuple  $\Delta x$  can serve two tuples  $s \neq s'$ . In this case:
  - going from  $s_i$  to sign $(\Delta x_i)$  changes at most  $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$  signs, and - going from sign $(\Delta x_i)$  to  $s'_i$  also changes at most  $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$  signs.
- Thus, between the tuples s and s', at most  $2 \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$  signs are different.
- In other words, for the Hamming distance  $d(s, s') \stackrel{\text{def}}{=} \#\{i: s_i \neq s'_i\}$ , we have  $d(s, s') \leq 2 \cdot n \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$ .



• Thus, if 
$$d(s,s') > 2 \cdot n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$$
, then no tuples  $(\Delta x_1, \ldots, \Delta x_n)$  can serve both sign tuples s and s'.

• In this case, the two sets of tuples  $\Delta x$  do not intersect:

- tuples s.t. 
$$s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 - \varepsilon);$$
  
- tuples s.t.  $s'_1 \cdot \Delta x_1 + \ldots + s'_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 - \varepsilon).$ 

- Let's take take M sign tuples  $s^{(1)}, \ldots, s^{(M)}$  for which  $d(s^{(i)}, s^{(j)}) > 2 \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$  for all  $i \neq j$ .
- Then the probability P that  $\Delta x$  serves one of these sign tuples is  $\geq M \cdot p$ .

-1

• Since 
$$P \le 1$$
, we have  $p \le \frac{1}{M}$ ; so:

- to prove that  $p_n$  is exponentially decreasing,
- it is sufficient to find the sign tuples whose number M is exponentially increasing.

| Introduction |                    |          |  |  |  |
|--------------|--------------------|----------|--|--|--|
| Н            | How to Get More    |          |  |  |  |
| Н            | How to Speed Up    |          |  |  |  |
| Тс           | Towards a Better   |          |  |  |  |
| Н            | How General Can We |          |  |  |  |
| Pr           | roofs              |          |  |  |  |
|              | Home Page          |          |  |  |  |
|              |                    |          |  |  |  |
|              | Title Page         |          |  |  |  |
|              | 44                 | ••       |  |  |  |
|              | •                  |          |  |  |  |
|              | Page 6             | 58 of 72 |  |  |  |
|              | Go Back            |          |  |  |  |
|              |                    |          |  |  |  |
|              | Full Screen        |          |  |  |  |
|              | Close              |          |  |  |  |
|              | Quit               |          |  |  |  |
|              |                    |          |  |  |  |

• Let us denote 
$$\beta \stackrel{\text{def}}{=} \frac{\varepsilon}{1 - \alpha - \varepsilon}$$
.

- Then, for each sign tuple s, the number t of all sign tuples s' for which  $d(s, s') \leq \beta \cdot n$  is equal to the sum of:
  - the number of tuples  $\binom{n}{0}$  that differ from s in 0 places,
  - the number of tuples  $\binom{n}{1}$  that differ from s in 1 place, ...,
  - the number of tuples  $\binom{n}{\beta \cdot n}$  that differ from s in  $\beta \cdot n$  places,

• Thus, 
$$t = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n \cdot \beta}.$$

| Introduction       |                 |      |  |  |  |
|--------------------|-----------------|------|--|--|--|
| How to Get More    |                 |      |  |  |  |
| Но                 | How to Speed Up |      |  |  |  |
| Towards a Better   |                 |      |  |  |  |
| How General Can We |                 |      |  |  |  |
| Pro                | oofs            |      |  |  |  |
|                    | Home            | Page |  |  |  |
|                    | Title Page      |      |  |  |  |
|                    | ••              | ••   |  |  |  |
|                    | •               |      |  |  |  |
|                    | Page 69 of 72   |      |  |  |  |
|                    | Go Back         |      |  |  |  |
|                    | Full Screen     |      |  |  |  |
|                    | Close           |      |  |  |  |
|                    | Quit            |      |  |  |  |

• When 
$$\beta < 0.5$$
 and  $\beta \cdot n < \frac{n}{2}$ , the number of combinations  $\binom{n}{k}$  increases with  $k$ , so  $t \le \beta \cdot n \cdot \binom{n}{\beta \cdot n}$ .  
• Here,  $\binom{a}{b} = \frac{a!}{b! \cdot (a-b)!}$ . Since  $n! \sim \left(\frac{n}{e}\right)^n$ , we have  $t \le \beta \cdot n \cdot \left(\frac{1}{\beta^{\beta} \cdot (1-\beta)^{1-\beta}}\right)^n$ .

- Here,  $\gamma \stackrel{\text{def}}{=} \frac{1}{\beta^{\beta} \cdot (1-\beta)^{1-\beta}} = \exp(S)$ , where  $S \stackrel{\text{def}}{=} -\beta \cdot \ln(\beta) (1-\beta) \cdot \ln(1-\beta)$  is Shannon's entropy.
- It is known that S attains its largest value when  $\beta = 0.5$ , in which case  $S = \ln(2)$  and  $\gamma = \exp(S) = 2$ .
- When  $\beta < 0.5$ , we have  $S < \ln(2)$ , thus,  $\gamma < 2$ , and  $t \le \beta \cdot n \cdot \gamma^n$  for some  $\gamma < 2$ .

| Introduction       |                 |          |  |  |  |
|--------------------|-----------------|----------|--|--|--|
| How to             | How to Get More |          |  |  |  |
| How to             | How to Speed Up |          |  |  |  |
| Towards a Better   |                 |          |  |  |  |
| How General Can We |                 |          |  |  |  |
| Proofs             |                 |          |  |  |  |
|                    | Home Page       |          |  |  |  |
|                    |                 |          |  |  |  |
|                    | Title Page      |          |  |  |  |
|                    | ا∎              | ••       |  |  |  |
|                    | •               |          |  |  |  |
| F                  | Page 7          | 70 of 72 |  |  |  |
|                    |                 |          |  |  |  |
|                    | Go Back         |          |  |  |  |
|                    | Full Screen     |          |  |  |  |
|                    | Close           |          |  |  |  |
|                    |                 |          |  |  |  |
|                    | Quit            |          |  |  |  |

- Let us now construct the desired collection of sign tuples  $s^{(1)}, \ldots, s^{(M)}$ .
  - We start with some sign tuple  $s^{(1)}$ , e.g.,  $s^{(1)} = (1, \ldots, 1)$ .
  - Then, we dismiss  $t \leq \gamma^n$  tuples which are  $\leq \beta$ -close to s, and select one of the remaining tuples as  $s^{(2)}$ .
  - We then dismiss  $t \leq \gamma^n$  tuples which are  $\leq \beta$ -close to  $s^{(2)}$ .
  - Among the remaining tuples, we select the tuple  $s^{(3)}$ , etc.
- Once we have selected M tuples, we have thus dismissed  $t \cdot M \leq \beta \cdot n \cdot \gamma^n \cdot M$  sign tuples.
- So, as long as this number is smaller than the overall number  $2^n$  of sign tuples, we can continue selecting.

| Introduction     |                              |                   |   |  |
|------------------|------------------------------|-------------------|---|--|
| Ha               | ow to Get                    | More              |   |  |
| Ha               | ow to Spee                   | ed Up             |   |  |
| Towards a Better |                              |                   |   |  |
| Ha               | ow Genera                    | l Can We          | • |  |
| Pr               | oofs                         |                   |   |  |
|                  |                              |                   |   |  |
|                  | Ноте                         | e Page            |   |  |
|                  | Title                        | Page              |   |  |
|                  |                              | - ugo             |   |  |
|                  |                              |                   |   |  |
|                  | ••                           | ••                |   |  |
|                  | ••                           | ++                |   |  |
|                  |                              |                   |   |  |
|                  | 4                            |                   |   |  |
|                  | ◀<br>Page 7                  |                   |   |  |
|                  | ◀<br>Page 7                  | 1 of 72           |   |  |
|                  | Page 7<br>Go                 | 1 of 72           |   |  |
|                  | ↓<br>Page 7<br>Go<br>Full 5  | 1 of 72<br>Back   |   |  |
|                  | ↓<br>Page 7<br>Go<br>Full 5  | ► I of 72<br>Back |   |  |
|                  | Page 7<br>Go<br>Full 5<br>CI | ► I of 72<br>Back |   |  |

#### 63. Proof from Part 4 (conclusions)

- Our procedure ends when we have selected M tuples for which  $\beta \cdot n \cdot \gamma^n \cdot M \ge 2^n$ .
- Thus, we have selected  $M \ge \left(\frac{2}{\gamma}\right)^n \cdot \frac{1}{\beta \cdot n}$  tuples.
- So, we have indeed selected exponentially many tuples.

• Hence, 
$$p_n \leq \frac{1}{M} \leq \beta \cdot n \cdot \left(\frac{\gamma}{2}\right)^n$$
, i.e.,  
 $p_n \leq \beta \cdot n \cdot c^n$ , where  $c \stackrel{\text{def}}{=} \frac{\gamma}{2} < 1$ .

• So, the probability  $p_n$  is indeed exponentially decreasing. The main result is proven.

| Introduction       |  |
|--------------------|--|
| How to Get More    |  |
| How to Speed Up    |  |
| Towards a Better   |  |
| How General Can We |  |
| Proofs             |  |
|                    |  |
|                    |  |
|                    |  |
| Home Page          |  |
| Title Page         |  |
| Thie Tage          |  |
| 44                 |  |
|                    |  |
| ▲ ▶                |  |
|                    |  |
| Page 72 of 72      |  |
|                    |  |
| Go Back            |  |
|                    |  |
| Full Screen        |  |
| Close              |  |
| Ciose              |  |
| Quit               |  |
|                    |  |