
Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 1 of 72

Go Back

Full Screen

Close

Quit

Combining Interval and
Probabilistic Uncertainty in

Engineering Applications

Andrew Pownuk

Computational Science Program
University of Texas at El Paso

El Paso, Texas 79968, USA
ampownuk@utep.edu

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 2 of 72

Go Back

Full Screen

Close

Quit

Part I

Introduction

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 3 of 72

Go Back

Full Screen

Close

Quit

1. Need for Data Processing

• One of the main objectives of science is to predict fu-
ture values y of physical quantities:

– in meteorology, we need to predict future weather;

– in airplane control, we need to predict the location
and the velocity of the plane under current control.

• To make this prediction:

– we need to know the relation y = f(x1, . . . , xn) be-
tween y and related quantities x1, . . . , xn;

– then, we measure or estimate x1, . . . , xn;

– finally, we use the results x̃i of measurement
(or estimation) to compute an estimate

ỹ = f(x̃1, . . . , x̃n).

• This computation of ỹ is an important case of data
processing.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 4 of 72

Go Back

Full Screen

Close

Quit

2. Need to Take Uncertainty Into Account When
Processing Data

• Measurement are never absolutely accurate: in general,

∆xi
def
= x̃i − xi 6= 0.

• As a result, the estimate ỹ = f(x̃1, . . . , x̃n) is, in gen-
eral, different from the ideal value y = f(x1, . . . , xn).

• To estimate the accuracy ∆y
def
= ỹ−y, we need to have

some information about the measurement errors ∆xi.

• Traditional engineering approach assumes that we
know the probability distribution of each ∆xi.

• Often, ∆xi ∼ N(0, σi), and different ∆xi are assumed
to be independent.

• In such situations, our goal is to find the probability
distribution for ∆y.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 5 of 72

Go Back

Full Screen

Close

Quit

3. Cases of Interval and Fuzzy Uncertainty

• Often, we only know the upper bound ∆i: |∆xi| ≤ ∆i.

• Then, the only information about the xi is that

xi ∈ xi
def
= [x̃i −∆i, x̃i + ∆i].

• Different xi ∈ xi lead, in general, to different

y = f(x1, . . . , xn).

• We want to find the range y of possible values of y:

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

• To gauge the accuracy of expert estimates, it is reason-
able to use fuzzy techniques, i.e., to describe:

– for each possible value xi,

– the degree µi(xi) to which xi is possible.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 6 of 72

Go Back

Full Screen

Close

Quit

4. Measurement and Estimation Inaccuracies Are
Usually Small

• In many practical situations, the measurement and es-
timation inaccuracies ∆xi are relatively small.

• Then, we can safely ignore terms which are quadratic
(or of higher order) in terms of ∆xi:

∆y = ỹ− y = f(x̃1, . . . , x̃n)− f(x̃1−∆x1, . . . , x̃n−∆xn) =
n∑
i=1

ci ·∆xi, where ci =
∂f

∂xi
.

• If needed, the derivative can be estimated by numerical
differentiation

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 7 of 72

Go Back

Full Screen

Close

Quit

5. Case of Interval Uncertainty

• Let us consider the case when ∆y =
n∑
i=1

ci ·∆xi.

• In this case, y = [ỹ−∆, ỹ+ ∆], where ∆ =
n∑
i=1

|ci| ·∆i.

• Sometimes, we have explicit expressions or efficient al-
gorithms for the partial derivatives ci.

• Often, however, we use proprietary software in our
computations.

• Then, we cannot use differentiation formulas, but we
can use numerical differentiation.

• Problem: We need n + 1 calls to f , to compute ỹ and
n values ci.

• When f is time-consuming and n is large, this takes
too long.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 8 of 72

Go Back

Full Screen

Close

Quit

6. A Faster Method: Cauchy-Based Monte-Carlo

• Idea: use Cauchy distribution ρ∆(x) =
∆

π
· 1

1 + x2/∆2
.

• Why: when ∆xi ∼ ρ∆i
(x) are indep., then

∆y =
n∑
i=1

ci ·∆xi ∼ ρ∆(x), with ∆ =
n∑
i=1

|ci| ·∆i.

• Thus, we simulate ∆x
(k)
i ∼ ρ∆i

(x); then,

∆y(k) def
= ỹ − f(x̃1 −∆x

(k)
1 , . . .) ∼ ρ∆(x).

• Maximum Likelihood method can estimate ∆:
N∏
k=1

ρ∆(∆y(k))→ max, so
N∑
k=1

1

1 + (∆y(k))2/∆2
=
N

2
.

• To find ∆ from this equation, we can use, e.g., the
bisection method for ∆ = 0 and ∆ = max

1≤k≤N
|∆y(k)|.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 9 of 72

Go Back

Full Screen

Close

Quit

7. Monte-Carlo: Successes and Limitations

• Fact: for Monte-Carlo, accuracy is ε ∼ 1/
√
N .

• Good news: the number N of calls to f depends only
the desired accuracy ε.

• Example: to find ∆ with accuracy 20% and certainty
95%, we need N = 200 iterations.

• Limitation: this method is not realistic; indeed:

– we know that ∆xi is inside [−∆i,∆i], but

– Cauchy-distributed variable has a high probability
to be outside this interval.

• Natural question: is it a limitation of our method, or
of a problem itself?

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 10 of 72

Go Back

Full Screen

Close

Quit

8. Fuzzy Case: A Problem

-

· · ·
-

-

µn(xn)

µ2(x2)

µ1(x1)

-µ = f(µ1, . . . , µn)f

• Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers µi(xi).

• Compute: µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Motivation: y is a possible value of Y ↔∃x1, . . . , xn s.t.
each xi is a possible value of Xi and f(x1, . . . , xn) = y.

• Details: “and” is min, ∃ (“or”) is max, hence

µ(y) = max
x1,...,xn

min(µ1(x1), . . . , µn(xn), t(f(x1, . . . , xn) = y)),

where t(true) = 1 and t(false) = 0.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 11 of 72

Go Back

Full Screen

Close

Quit

9. Fuzzy Case: Reduction to Interval Computa-
tions

• Given: an algorithm y = f(x1, . . . , xn) and n fuzzy
numbers Xi described by membership functions µi(xi).

• Compute: Y = f(X1, . . . , Xn), where Y is defined by
Zadeh’s extension principle:

µ(y) = max
x1,...,xn:f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)).

• Idea: represent each Xi by its α-cuts

Xi(α) = {xi : µi(xi) ≥ α}.

• Advantage: for continuous f , for every α, we have

Y (α) = f(X1(α), . . . , Xn(α)).

• Resulting algorithm: for α = 0, 0.1, 0.2, . . . , 1 apply in-
terval computations techniques to compute Y (α).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 12 of 72

Go Back

Full Screen

Close

Quit

10. Open Problems

• In engineering applications, we want methods for esti-
mating uncertainty which are:

– accurate – this is most important in most engineer-
ing applications;

– fast: this is important in some engineering applica-
tions where we need real-time computations,

– understandable to engineers – otherwise, engineers
will be reluctant to use them, and

– sufficiently general – so that they can be applied in
all kinds of situations.

• It is thus desirable to design more accurate, faster,
more understandable, and/or more general methods.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 13 of 72

Go Back

Full Screen

Close

Quit

11. What We Do in This Thesis

• First, we show how to make the current methods more
accurate.

• Then, we show how to make these methods faster.

• After that, we show how to make these methods more
understandable to engineers.

• Finally, we analyze how to make these methods more
general.

• We also describe remaining open problems and our
plan for future work.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 14 of 72

Go Back

Full Screen

Close

Quit

Part II

How to Get More Accurate
Estimates – by Properly Taking
Model Inaccuracy into Account

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 15 of 72

Go Back

Full Screen

Close

Quit

12. Linearization-Based Algorithm: Reminder

• We know: an algorithm f(x1, . . . , xn) and values ỹi
and ∆i.

• We need to find: the range of values f(x1, . . . , xn) when
xi ∈ [x̃i −∆i, x̃i + ∆i].

• Algorithm:

1) first, we compute ỹ = f(x̃1, . . . , x̃n);

2) then, for each i from 1 to n, we compute

yi = f(x̃1, . . . , x̃i−1, x̃i + ∆i, x̃i+1, . . . , x̃n);

3) after that, we compute y = ỹ +
n∑
i=1

|yi − ỹ| and

y = ỹ −
n∑
i=1

|yi − ỹ|.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 16 of 72

Go Back

Full Screen

Close

Quit

13. Taking Model Inaccuracy into Account

• We rarely know the exact dependence y =
f(x1, . . . , xn).

• We have an approx. model F (x1, . . . , xn) w/known ac-
curacy ε: |F (x1, . . . , xn)− f(x1, . . . , xn)| ≤ ε.

• We know: an algorithm F (x1, . . . , xn), accuracy ε, val-
ues x̃i and ∆i.

• Find: the range {f(x1, . . . , xn) : xi ∈ [x̃i−∆i, x̃i+∆i]}.

• If we use the approximate model in our estimate, we

get Y = Ỹ +
n∑
i=1

|Yi − Ỹ |.

• Here, |Ỹ − ỹ| ≤ ε and |Yi − yi| ≤ ε, so |y − Y | ≤
(2n+ 1) · ε.

• Thus, we arrive at the following algorithm.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 17 of 72

Go Back

Full Screen

Close

Quit

14. Resulting Algorithm

• We know: an algorithm F (x1, . . . , xn), accuracy ε, val-
ues x̃i and ∆i.

• Find: the range {f(x1, . . . , xn) : xi ∈ [x̃i−∆i, x̃i+∆i]}.

• Algorithm:

1) compute Ỹ = Y (x̃1, . . . , x̃n) and

Yi = F (x̃1, . . . , x̃i−1, x̃i + ∆i, x̃i+1, . . . , x̃n).

2) compute B = Ỹ +
n∑
i=1

|Yi − Ỹ | + (2n + 1) · ε and

B = Ỹ −
n∑
i=1

|Yi − Ỹ | − (2n+ 1) · ε.

• Problem: when n is large, then, even for reasonably
small inaccuracy ε, the value (2n+ 1) · ε is large.

• What we do: we show how we can get better estimates
for y.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 18 of 72

Go Back

Full Screen

Close

Quit

15. How to Get Better Estimates: Idea

• One possible source of model inaccuracy is discretiza-
tion (e.g., FEM).

• When we select a different combination of parameters,
we get an unrelated value of inaccuracy.

• So, let’s consider approx. errors ∆y
def
= F (x1, . . . , xn)−

f(x1, . . . , xn) as independent random variables.

• What is a probability distribution for these random
variables? We know that ∆y ∈ [−ε, ε].

• We do not have any reason to assume that some values
from this interval are more probable than others.

• So, it is reasonable to assume that all the values are
equally probable: a uniform distribution.

• For this uniform distribution, the mean is 0, and the

standard deviation is σ =
ε√
3

.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 19 of 72

Go Back

Full Screen

Close

Quit

16. How to Get a Better Estimate for ỹ

• In our main algorithm, we apply the computational
model F to n+ 1 different tuples.

• Let’s also compute M
def
= F (x̃1 −∆1, . . . , x̃n −∆n).

• In linearized case, ỹ +
n∑
i=1

yi + m = (n + 2) · ỹ, so ỹ =

1

n+ 2
·

(
ỹ +

n∑
i=1

yi +m

)
, and we can estimate ỹ as

Ỹnew =
1

n+ 2
·

(
Ỹ +

n∑
i=1

Yi +m

)
.

• Here, ∆ỹnew =
1

n+ 2
·

(
∆ỹ +

n∑
i=1

∆yi + ∆m

)
, so its

variance is σ2
[
Ỹnew

]
=

ε2

3 · (n+ 2)
� ε2

3
= σ2

[
Ỹ
]
.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 20 of 72

Go Back

Full Screen

Close

Quit

17. Let Us Use Ỹnew When Estimating y

• Let us compute Y new = Ỹnew +
n∑
i=1

|Yi − Ỹnew|.

• Here, when si ∈ {−1, 1} are the signs of yi− ỹ, we get:

y = ỹ +
n∑
i=1

si · (yi − ỹ) =

(
1−

n∑
i=1

si

)
· ỹ +

n∑
i=1

si · yi.

• Thus, ∆ynew =

(
1−

n∑
i=1

si

)
·∆ỹnew +

n∑
i=1

si ·∆yi, so

σ2 =

(
1−

n∑
i=1

si

)2

· ε2

3 · (n+ 2)
+

n∑
i=1

ε2

3
.

• Here, |si| ≤ 1, so

∣∣∣∣1− n∑
i=1

si

∣∣∣∣ ≤ n+ 1, and

σ2 ≤ ε2

3
· (2n+ 1).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 21 of 72

Go Back

Full Screen

Close

Quit

18. Using Ỹnew (cont-d)

• We have ∆ynew =

(
1−

n∑
i=1

si

)
·∆ỹnew +

n∑
i=1

si ·∆yi.

• Due to the Central Limit Theorem, ∆ynew is ≈ normal.

• We know that σ2 ≤ ε2

3
· (2n+ 1).

• Thus, with certainty depending on k0, we have

y ≤ Y new + k0 · σ ≤ Y new + k0 ·
ε√
3
·
√

2n+ 1 :

• with certainty 95% for k0 = 2,

• with certainty 99.9% for k0 = 3, etc.

• Here, inaccuracy grows as
√

2n+ 1.

• This is much better than in the traditional approach,
where it grows ∼ 2n+ 1.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 22 of 72

Go Back

Full Screen

Close

Quit

19. Resulting Algorithm

• We know: F (x1, . . . , xn), ε, x̃i and ∆i.

• We want: to find the range of f(x1, . . . , xn) when
xi ∈ [x̃i −∆i, x̃i + ∆i].

• Algorithm:

1) compute Ỹ = F (x̃1, . . . , x̃n),

M = F (x̃1 −∆1, . . . , x̃n −∆n), and

Yi = F (x̃1, . . . , x̃i−1, x̃i + ∆i, x̃i+1, . . . , x̃n);

2) compute Ỹnew =
1

n+ 2
·

(
Ỹ +

n∑
i=1

Yi +M

)
,

b = Ỹnew +
n∑
i=1

∣∣∣Yi − Ỹnew

∣∣∣+ k0 ·
√

2n+ 1 · ε√
3

;

b = Ỹnew −
n∑
i=1

∣∣∣Yi − Ỹnew

∣∣∣− k0 ·
√

2n+ 1 · ε√
3
.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 23 of 72

Go Back

Full Screen

Close

Quit

20. A Similar Improvement Is Possible for the
Cauchy Method

• In the Cauchy method, we compute Ỹ and the values

Y (k) = F (x̃1 + η
(k)
1 , . . . , x̃n + η(k)

n).

• We can then compute the improved estimate for ỹ, as:

Ỹnew =
1

N + 1
·

(
Ỹ +

N∑
k=1

Y (k)

)
.

• We can now use this improved estimate when estimat-
ing the differences ∆y(k): namely, we compute

Y (k) − Ỹnew.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 24 of 72

Go Back

Full Screen

Close

Quit

21. Experimental Testing: Seismic Inverse Prob-
lem in Geophysics

• Problem: reconstruct the velocity of sound vi at differ-
ent spatial locations and at different depths.

• What we know: the travel-times tj of a seismic signal
from the set-up explosion to seismic stations.

• Hole’s iterative algorithm:

– we start with geology-motivated values v
(1)
i ;

– based on the current approximation v
(k)
i , we esti-

mate the travel times t
(k)
j ;

– update vi:
1

v
(k+1)
i

=
1

v
(k)
i

+
1

ni
·
∑
j

tj − t(k)
j

Lj
.

• Using Ỹnew decreased the inaccuracy σ, on average, by
15%; σ increased only in one case (only by 7%).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 25 of 72

Go Back

Full Screen

Close

Quit

22. Case Study: Seismic Inverse Problem in the
Geosciences

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 26 of 72

Go Back

Full Screen

Close

Quit

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 27 of 72

Go Back

Full Screen

Close

Quit

23. Can We Further Improve the Accuracy?

• The inaccuracy Y 6= y is caused by using elements of
finite size h.

• This inaccuracy is proportional to h.

• If we decrease h to h′, we thus need K
def
=

h3

(h′)3
more

cells, so we need K times more computations.

• Thus, the accuracy decreases as 3
√
K.

• New idea: select K small vectors
(

∆
(k)
1 , . . . ,∆

(k)
n

)
which add up to 0, and estimate ỹ as

YK(x1, . . . , xn) =
1

K
·
K∑
k=1

F
(
x1 + ∆

(k)
1 , . . . , xn + ∆(k)

n

)
.

• Averaging K independent random errors decreases the
inaccuracy by a factor of

√
K, much faster than 3

√
K.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 28 of 72

Go Back

Full Screen

Close

Quit

Part III

How to Speed Up Computations –
by Processing Different Types of
Uncertainty Separately

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 29 of 72

Go Back

Full Screen

Close

Quit

24. Cases for Which a Speed-Up Is Possible

• Sometimes, all membership functions are “of the same
type”: µ(z) = µ0(k · z) for some symmetric µ0(z).

• Example: for triangular functions,

µ0(z) = max(1− |z|, 0).

• In this case, µ(z) ≥ α is equivalent to µ0(k · z) ≥ α, so
α∆0 = k · α∆ and 0∆0 = k · 0∆.

• Thus, α∆ = f(α) · 0∆, where f(α)
def
=

α∆0

0∆0
.

• For example, for a triangular membership function, we
have f(α) = 1− α.

• So, if we know the type µ0 (hence f(α)), and we know
the 0-cut, we can compute all α-cuts as α∆ = f(α)·0∆.

• So, if µi(∆xi) are of the same type, then for all α, we
have α∆i = f(α) · 0∆i

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 30 of 72

Go Back

Full Screen

Close

Quit

25. When a Speed-Up Is Possible (cont-d)

• We know that α∆ =
n∑
i=1

|ci| · α∆i.

• For α∆i = f(α) · 0∆i, we get

α∆ =
n∑
i=1

|ci| · f(α) · 0∆i.

• So, α∆ = f(α) ·
n∑
i=1

|ci| · 0∆i = f(α) · 0∆.

• Thus, if all µ(x) are of the same type µ0(z), there is no
need to compute α∆ eleven times:

– it is sufficient to compute 0∆;

– to find all other values α∆, we simply multiply 0∆
by the factors f(α) corresponding to µ0(z).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 31 of 72

Go Back

Full Screen

Close

Quit

26. A More General Case

• A more general case is:

– when we have a list of T different types of uncer-
tainty – i.e., types of membership functions, and

– each approximation error ∆xi consists of ≤ T com-
ponents of the corresponding type t:

∆xi =
T∑
t=1

∆xi,t.

• For example:

– type t = 1 may correspond to intervals (which are,
of course, a particular case of fuzzy uncertainty),

– type t = 2 may correspond to triangular member-
ship functions, etc.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 32 of 72

Go Back

Full Screen

Close

Quit

27. How This Case Is Processed Now

• First stage:

– we use the known membership functions µi,t(∆xi,t)

– to find the memberships functions µi(∆xi) that cor-
respond to the sum ∆xi.

• Second stage: we use µi(∆xi) to compute the desired
membership function µ(∆y).

• Problem: on the second stage, we apply the above for-
mula eleven times:

α∆ =
n∑
i=1

|ci| · α∆i.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 33 of 72

Go Back

Full Screen

Close

Quit

28. Main Idea

• We have ∆y =
n∑
i=1

ci ·∆xi, where

∆xi =
T∑
t=1

∆xi,t.

• Thus, ∆y =
n∑
i=1

ci ·
(

T∑
t=1

∆xi,t

)
.

• Grouping together all the terms corr. to type t, we get

∆y =
T∑
t=1

∆yt, where ∆yt
def
=

n∑
i=1

ci ·∆xi,t.

• For each t, we are combining membership functions of
the same type, so it is enough to compute 0∆t.

• Then, we add the resulting membership functions – by
adding the corresponding α-cuts.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 34 of 72

Go Back

Full Screen

Close

Quit

29. Resulting Algorithm

• Let [−0∆i,t,
0∆i,t] be 0-cuts of the membership func-

tions µi,t(∆xi,t).

• Based on these 0-cuts, we compute, for each type t, the

values 0∆t =
n∑
i=1

|ci| · 0∆i,t.

• Then, for α = 0, α = 0.1, . . . , and for α = 1.0, we
compute the values α∆t = ft(α) · 0∆t.

• Finally, we add up α-cuts corresponding to different

types t, to come up with the expression α∆ =
T∑
t=1

α∆t.

• Comment. We can combine the last two steps into a

single step: α∆ =
T∑
t=1

ft(α) · 0∆t.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 35 of 72

Go Back

Full Screen

Close

Quit

30. The New Algorithm Is Much Faster

• The original algorithm computed the above formula
eleven times:

α∆ =
n∑
i=1

|ci| · α∆i.

• The new algorithm uses the corresponding formula T
times, i.e., as many times as there are types.

• All the other computations are much faster, since they
do not grow with the input size n.

• Thus, if the number T of different types is smaller than
eleven, the new methods is much faster.

• Example: for T = 2 types (e.g., intervals and triangu-

lar µ(x)), we get a
11

2
= 5.5 times speedup.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 36 of 72

Go Back

Full Screen

Close

Quit

31. Conclusions and Future Work

• We can therefore conclude that sometimes, it is benefi-
cial to process different types of uncertainty separately.

• Namely, it is beneficial when we have ten or fewer dif-
ferent types of uncertainty.

• The fewer types of uncertainty we have, the faster the
resulting algorithm.

• We plan to test this idea of several actual data pro-
cessing examples.

• We also plan to extend this idea to other types of un-
certainty, in particular, to probabilistic uncertainty.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 37 of 72

Go Back

Full Screen

Close

Quit

Part IV

Towards a Better
Understandability of
Uncertainty-Estimating
Algorithms: Explaining the Need
for Non-Realistic Monte-Carlo
Simulations

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 38 of 72

Go Back

Full Screen

Close

Quit

32. Formulation of the Problem: Reminder

• Good news: Cauchy-based Monte-Carlo method is an
efficient way of estimating interval uncertainty.

• Limitation: this method is not realistic; indeed:

– we know that ∆xi is inside [−∆i,∆i], but

– Cauchy-distributed variable has a high probability
to be outside this interval.

• Natural question: is it a limitation of our method, or
of a problem itself?

• Our answer: for interval uncertainty, a realistic Monte-
Carlo method is not possible.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 39 of 72

Go Back

Full Screen

Close

Quit

33. Proof: Case of Independent Variables

• It is sufficient to prove that we cannot get the correct
estimate for one specific function

f(x1, . . . , xn) = x1+. . .+xn, when ∆y = ∆x1+. . .+∆xn.

• When each variables ∆xi is in the interval [−δ, δ], then
the range of ∆y is [−∆,∆], where ∆ = n · δ.

• In Monte-Carlo, ∆y(k) = ∆x
(k)
1 + . . .+ ∆x

(k)
n .

• ∆
(k)
i are i.i.d. Due to the Central Limit Theorem, when

n→∞, the distribution of the sum tends to Gaussian.

• For a normal distribution, with very high confidence,
∆y ∈ [µ− k · σ, µ+ k · σ].

• Here, σ ∼
√
n, so this interval has width w ∼

√
n.

• However, the actual range of ∆y is ∼ n� w. Q.E.D.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 40 of 72

Go Back

Full Screen

Close

Quit

34. General Case

• Let’s take f(x1, . . . , xn) = s1 · x1 + . . .+ sn · xn, where
si ∈ {−1, 1}.

• Then, ∆ =
n∑
i=1

|ci| ·∆i = n · δ.

• Let ε > 0, δ > 0, and p ∈ (0, 1). We consider proba-
bility distributions P on the set of all vectors

(∆x1 . . . ,∆xn) ∈ [−δ, δ]× . . .× [−δ, δ].

• We say that P is a (p, ε)-realistic Monte-Carlo estima-
tion (MCE) if for all si ∈ {−1, 1}, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) ≥ p.

• Result. If for every n, we have a (pn, ε)-realistic
MCE, then pn ≤ β · n · cn for some β > 0 and c < 1.

• For probability pn, we need 1/pn ∼ c−n simulations –
more than n+ 1 for numerical differentiation.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 41 of 72

Go Back

Full Screen

Close

Quit

35. Why Cauchy Distribution: Formulation of the
Problem

• We want to find a family of probability distributions
with the following property:

– when independent X1, . . . , Xn have distributions
from this family with parameters ∆1, . . . ,∆n,

– then each Y = c1 ·X1 + . . .+ cn ·Xn ∼ ∆ ·X, where

X corr. to parameter 1, and ∆ =
n∑
i=1

|ci| ·∆i.

• In particular, for ∆1 = . . . = ∆n = 1, the desired
property of this probability distribution is as follows:

– if we have n independent identically distributed
random variables X1, . . . , Xn,

– then each Y = c1 ·X1 + . . .+ cn ·Xn has the same

distribution as ∆ ·Xi, where ∆ =
n∑
i=1

|ci|.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 42 of 72

Go Back

Full Screen

Close

Quit

36. Analysis of the Problem

• For n = 1 and c1 = −1, the desired property says that
−X ∼ X, the distribution is even.

• A usual way to describe a probability distribution is to
use a probability density function ρ(x).

• Often, it is convenient to use its Fourier transform –

the characteristic function χX(ω)
def
= E[exp(i · ω ·X)].

• When Xi are independent, then for S = X1 +X2:

χS(ω) = E[exp(i · ω · S)] = E[exp(i · ω · (X1 +X2)] =

E[exp(i · ω ·X1 + i · ω ·X2)] =

E[exp(i · ω ·X1) · exp(i · ω ·X2)].

• Since X1 and X2 are independent,

χS(ω) = E[exp(i·ω·X1)]·E[exp(i·ω·X2)] = χX1
(ω)·χX2

(ω).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 43 of 72

Go Back

Full Screen

Close

Quit

37. Analysis of the Problem (cont-d)

• Similarly, for Y =
n∑
i=1

ci ·Xi, we have

χY (ω) = E[exp(i·ω·Y)] = E

[
exp

(
i · ω ·

n∑
i=1

ci ·Xi

)]
=

E

[
n∏
i=1

exp (i · ω · ci ·Xi)

]
=

n∏
i=1

χX(ω · ci).

• The desired property is Y ∼ ∆ ·X, so

n∏
i=1

χX(ω·ci) = χ∆·X(ω) = E[exp(i·ω·(∆·X))]χX(ω·∆),

so χX(c1 ·ω) · . . . ·χX(cn ·ω) = χX((|c1|+ . . .+ |cn|) ·ω).

• In particular, for n = 1, c1 = −1, we get χX(−ω) =
χX(ω), so χX(ω) should be an even function.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 44 of 72

Go Back

Full Screen

Close

Quit

38. Analysis of the Problem (cont-d)

• Reminder:

χX(c1 · ω) · . . . · χX(cn · ω) = χX((|c1|+ . . .+ |cn|) · ω).

• For n = 2, c1 > 0, c2 > 0, and ω = 1, we get

χX(c1 + c2) = χX(c1) · χX(c2).

• The characteristic function should be measurable.

• Known: the only measurable functions with this prop-
erty are χX(ω) = exp(−k · ω) for some k.

• Due to evenness, for a general ω, we get χX(ω) =
exp(−k · |ω|).

• By applying the inverse Fourier transform, we conclude
that X is Cauchy distributed.

• Conclusion: so, only Cauchy distribution works.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 45 of 72

Go Back

Full Screen

Close

Quit

Part V

How General Can We Go: What
Is Computable and What Is Not

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 46 of 72

Go Back

Full Screen

Close

Quit

39. Need to Take Uncertainty Into Account When
Processing Data: Reminder

• In practice, we are often interested in a quantity y
which is difficult to measure directly.

• Examples: distance to a star, amount of oil in the well,
tomorrow’s weather.

• Solution: find easier-to-measure quantities x1, . . . , xn
related to y by a known dependence y = f(x1, . . . , xn).

• Then, we measure xi and use measurement results x̃i
to compute an estimate ỹ = f(x̃1, . . . , x̃n).

• Measurements are never absolutely accurate, so even if

the model f is exact, x̃i 6= xi leads to ∆y
def
= ỹ− y 6= 0.

• It is important to use information about measurement

errors ∆xi
def
= x̃i − xi to estimate the accuracy ∆y.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 47 of 72

Go Back

Full Screen

Close

Quit

40. We Often Have Imprecise Probabilities

• Usual assumption: we know the probabilities for ∆xi.

• To find them, we measure the same quantities:

– with our measuring instrument (MI) and

– with a much more accurate MI, with x̃st
i ≈ xi.

• In two important cases, this does not work:

– state-of-the-art measurements, and

– measurements on the shop floor.

• Then, we have partial information about probabilities.

• Often, all we know is an upper bound |∆xi| ≤ ∆i.

• Then, we only know that xi ∈ [x̃i −∆i, x̃i + ∆i] and

y ∈ [y, y]
def
= {f(x1, . . . , xn) : xi ∈ [x̃i −∆i, x̃i + ∆i]}.

• Computing [y, y] is known as interval computation.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 48 of 72

Go Back

Full Screen

Close

Quit

41. How Do We Describe Imprecise Probabilities?

• Ultimate goal of most estimates: to make decisions.

• Known: a rational decision-maker maximizes expected
utility E[u(y)].

• For smooth u(y), y ≈ ỹ implies that

u(y) = u(x̃) + (y − ỹ) · u′(ỹ) +
1

2
· (y − ỹ)2 · u′′(ỹ).

• So, to find E[u(y)], we must know moments E[(y−ỹ)k].

• Often, u(x) abruptly changes: e.g., when pollution

level exceeds y0; then E[u(y)] ∼ F (y)
def
= Prob(y ≤ y0).

• From F (y), we can estimate moments, so F (x) is
enough.

• Imprecise probabilities mean that we know F (y), we
only know bounds (p-box) F (y) ≤ F (y) ≤ F (y).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 49 of 72

Go Back

Full Screen

Close

Quit

42. What Is Computable?

• Computations with p-boxes are practically important.

• It is thus desirable to come up with efficient algorithms
which are as general as possible.

• It is known that too general problems are often not
computable.

• To avoid wasting time, it is therefore important to find
out what can be computed.

• At first glance, this question sounds straightforward:

– to describe a cdf, we can consider a computable
function F (x);

– to describe a p-box, we consider a computable func-
tion interval [F (x), F (x)].

• Often, we can do that, but we will show that some-
times, we need to go beyond function intervals.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 50 of 72

Go Back

Full Screen

Close

Quit

43. Reminder: What Is Computable?

• A real number x corresponds to a value of a physical
quantity.

• We can measure x with higher and higher accuracy.

• So, x is called computable if there is an algorithm, that,
given k, produces a rational rk s.t. |x− rk| ≤ 2−k.

• A computable function computes f(x) from x.

• We can only use approximations to x.

• So, an algorithm for computing a function can, given
k, request a 2−k-approximation to x.

• Most usual functions are thus computable.

• Exception: step-function f(x) = 0 for x < 0 and
f(x) = 1 for x ≥ 0.

• Indeed, no matter how accurately we know x ≈ 0, from
rk = 0, we cannot tell whether x < 0 or x ≥ 0.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 51 of 72

Go Back

Full Screen

Close

Quit

44. Consequences for Representing a cdf F (x)

• We would like to represent a general probability distri-
bution by its cdf F (x).

• From the purely mathematical viewpoint, this is indeed
the most general representation.

• At first glance, it makes sense to consider computable
functions F (x).

• For many distributions, e.g., for Gaussian, F (x) is com-
putable.

• However, when x = 0 with probability 1, the cdf F (x)
is exactly the step-function.

• And we already know that the step-function is not com-
putable.

• Thus, we need to find an alternative way to represent
cdf’s – beyond computable functions.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 52 of 72

Go Back

Full Screen

Close

Quit

45. Back to the Drawing Board

• Each value F (x) is the probability that X ≤ x.

• We cannot empirically find exact probabilities p.

• We can only estimate frequencies f based on a sample
of size N .

• For large N , the difference d
def
= p−f is asymptotically

normal, with µ = 0 and σ =

√
p · (1− p)

N
.

• Situations when |d−µ| < 6σ are negligibly rare, so we
conclude that |f − p| ≤ 6σ.

• For large N , we can get 6σ ≤ δ for any accuracy δ > 0.

• We get a sample X1, . . . , XN .

• We don’t know the exact values Xi, only measured
values X̃i s.t. |X̃i −Xi| ≤ ε for some accuracy ε.

• So, what we have is a frequency f = Freq(X̃i ≤ x).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 53 of 72

Go Back

Full Screen

Close

Quit

46. Resulting Definition

• Here, Xi ≤ x− ε⇒ X̃i ≤ x⇒ Xi ≤ x+ ε, so

Freq(Xi ≤ x− ε) ≤ f = Freq(X̃i ≤ x) ≤ Freq(Xi ≤ x+ ε).

• Frequencies are δ-close to probabilities, so we arrive at
the following:

• For every x, ε > 0, and δ > 0, we get a rational number
f such that F (x− ε)− δ ≤ f ≤ F (x+ ε) + δ.

• This is how we define a computable cdf F (x).

• In the computer, to describe a distribution on an in-
terval [T , T]:

– we select a grid x1 = T , x2 = T + ε, . . . , and

– we store the corr. frequencies fi with accuracy δ.

• A class of possible distribution is represented, for each
ε and δ, by a finite list of such approximations.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 54 of 72

Go Back

Full Screen

Close

Quit

47. First Equivalent Definition

• Original: ∀x∀ε>0 ∀δ>0, we get a rational f such that

F (x− ε)− δ ≤ f ≤ F (x+ ε) + δ.

• Equivalent: ∀x ∀ε>0 ∀δ>0, we get a rational f which is
δ-close to F (x′) for some x′ such that |x′ − x| ≤ ε.

• Proof of equivalence:

– We know that F (x+ε)−F (x+ε/3)→ 0 as ε→ 0.

– So, for ε = 2−k, k = 1, 2, . . ., we take f and f ′ s.t.

F (x+ ε/3)− δ/4 ≤ f ≤ F (x+ (2/3) · ε) + δ/4

F (x+ (2/3) · ε)− δ/4 ≤ f ′ ≤ F (x+ ε) + δ/4.

– We stop when f and f ′ are sufficiently close:

|f − f ′| ≤ δ.

– Thus, we get the desired f .

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 55 of 72

Go Back

Full Screen

Close

Quit

48. Second Equivalent Definition

• We start with pairs (x1, f1), (x2, f2), . . .

• When fi+1 − fi > δ, we add intermediate pairs

(xi, fi + δ), (xi, fi + 2δ), . . . , (xi, fi+1).

• The resulting set of pairs is (ε, δ)-close to the graph
{(x, y) : F (x−0) ≤ y ≤ F (x)} in Hausdorff metric dH .

• (x, y) and (x′, y′) are (ε, δ)-close if |x − x′| ≤ ε and
|y − y′| ≤ δ.

• The sets S and S ′ are (ε, δ)-close if:

– for every s ∈ S, there is a (ε, δ)-close point s′ ∈ S ′;
– for every s′ ∈ S ′, there is a (ε, δ)-close point s ∈ S.

• Compacts with metric dH form a computable compact.

• So, F (x) is a monotonic computable object in this com-
pact.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 56 of 72

Go Back

Full Screen

Close

Quit

49. What Can Be Computed: A Positive Result
for the 1D Case

• Reminder: we are interested in F (x) and EF (x)[u(x)]
for smooth u(x).

• Reminder: estimate for F (x) is part of the definition.

• Question: computing EF (x)[u(x)] for smooth u(x).

• Our result: there is an algorithm that:

– given a computable cdf F (x),

– given a computable function u(x), and

– given accuracy δ > 0,

– computes EF (x)[u(x)] with accuracy δ.

• For computable classes F of cdfs, a similar algorithm
computes the range of possible values

[u, u]
def
= {EF (x)[u(x)] : F (x) ∈ F}.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 57 of 72

Go Back

Full Screen

Close

Quit

50. Proof: Main Idea

• Computable functions are computably continuous: for
every δ > 0, we can compute ε > 0 s.t.

|x− x′| ≤ ε⇒ |f(x)− f(x′)| ≤ δ.

• We select ε corr. to δ/4, and take a grid with step ε/4.

• For each xi, the value fi is (δ/4)-close to F (x′i) for some
x′i which is (ε/4)-close to xi.

• The function u(x) is (δ/2)-close to a piece-wise con-
stant function u′(x) = u(xi) for x ∈ [x′i, x

′
i+1].

• Thus, |E[u(x)]− E[u′(x)]| ≤ δ/2.

• Here, E[u′(x)] =
∑
i

u(xi) · (F (x′i+1)− F (x′i)).

• Here, F (x′i) is close to fi and F (x′i+1) is close to fi+1.

• Thus, E[u′(x)] (and hence, E[u(x)]) is computably
close to a computable sum

∑
i

u(xi) · (fi+1 − fi).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 58 of 72

Go Back

Full Screen

Close

Quit

51. What to Do in a Multi-D Case?

• For each g(x), y, ε > 0, and δ > 0, we can find a
frequency f such that:

|P (g(x) ≤ y′)− f | ≤ ε for some y′ s.t. |y − y′| ≤ δ.

• We select an ε-net x1, . . . , xn for X. Then,

X =
⋃
i

Bε(xi), where Bε(x)
def
= {x′ : d(x, x′) ≤ ε}.

• We select f1 which is close to P (Bε′(x1)) for all ε′ from
some interval [ε, ε] which is close to ε.

• We then select f2 which is close to P (Bε′(x1)∪Bε′(x2))
for all ε′ from some subinterval of [ε, ε], etc.

• Then, we get approximations to probabilities of the
sets Bε(xi)− (Bε(x1) ∪ . . . ∪Bε(xi−1)).

• This lets us compute the desired values E[u(x)].

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 59 of 72

Go Back

Full Screen

Close

Quit

Part VI

Conclusions and Future Work

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 60 of 72

Go Back

Full Screen

Close

Quit

52. Conclusions

• In many practical application, we process measurement
results and expert estimates.

• Measurements and expert estimates are never abso-
lutely accurate.

• Their result are slightly different from the actual (un-
known) values of the corresponding quantities.

• It is therefore desirable to analyze how measurement
inaccuracy affects the results of data processing.

• There exist numerous methods for estimating the ac-
curacy of the results of data processing.

• These methods cover different models of inaccuracy:
probabilistic, interval, and fuzzy.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 61 of 72

Go Back

Full Screen

Close

Quit

53. Conclusions (cont-d)

• To be useful in engineering applications, the uncer-
tainty methods should satisfy the following objectives.

• They should provide accurate estimate for the resulting
uncertainty.

• They should not take too much computation time.

• They should be understandable to engineers.

• They should be sufficiently general to cover all kinds
of uncertainty.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 62 of 72

Go Back

Full Screen

Close

Quit

54. Conclusions (final)

• In this thesis, on several case studies, we show how we
can achieve these four objectives.

• We show that we can get more accurate estimates by
properly taking model inaccuracy into account.

• We show that we can speed up computations by pro-
cessing different types of uncertainty differently.

• We show that we can make uncertainty-estimating al-
gorithms more understandable.

• We also analyze how general uncertainty-estimating al-
gorithms can be.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 63 of 72

Go Back

Full Screen

Close

Quit

55. Future Work

• In our future work, we plan to continue working in
these four directions.

• In particular, we plan to extend our speed-up algo-
rithms from fuzzy to probabilistic uncertainty.

• One of the main reasons for estimation and data pro-
cessing is to make decisions; we thus plan to analyze:

– how the corresponding uncertainty affects decision
making, and

– what is the best way to make decisions under dif-
ferent types of uncertainty.

• We plan to apply these algorithms to practical engi-
neering problems, e.g., pavement compaction.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 64 of 72

Go Back

Full Screen

Close

Quit

56. Acknowledgments

I want to express my gratitude to my committee members:

• Vladik Kreinovich, Chair

• Jack Chessa,

• Aaron Velasco, and

• Piotr Wojciechowski.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 65 of 72

Go Back

Full Screen

Close

Quit

Part VII

Proofs

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 66 of 72

Go Back

Full Screen

Close

Quit

57. Proof of the Main Result from Part 4

• Let us pick some α ∈ (0, 1).

• Let us denote, by m, the number of indices i or which
si ·∆xi > α · δ.
• If we have s1 ·∆x1 + . . .+sn ·∆xn ≥ n · δ · (1−ε), then:

– for n−m indices, we have si ·∆xi ≤ α · δ and

– for the other m indices, we have si ·∆xi ≤ δ.

• Thus, n · δ · (1− ε) ≤
n∑
i=1

si ·∆xi ≤ m · δ+ (n−m) ·α · δ.

• Dividing this inequality by δ, we get

n · (1− ε) ≤ m+ (n−m) · α.

• So, n · (1−α− ε) ≤ m · (1−α) and m ≥ n · 1− α− ε
1− α

.

• So, we have at least n · 1− α− ε
1− α

indices for which ∆xi

has the same sign as si (and for which |∆xi| > α · δ).

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 67 of 72

Go Back

Full Screen

Close

Quit

58. Proof from Part 4 (cont-d)

• So, for ∆xi corr. to (s1, . . . , sn), at most n · ε

1− α− ε
indices have a different sign than si.

• It is possible that the same tuple ∆x can serve two
tuples s 6= s′. In this case:

– going from si to sign(∆xi) changes at most

n · ε

1− α− ε
signs, and

– going from sign(∆xi) to s′i also changes at most

n · ε

1− α− ε
signs.

• Thus, between the tuples s and s′, at most 2· ε

1− α− ε
signs are different.

• In other words, for the Hamming distance d(s, s′)
def
=

#{i : si 6= s′i}, we have d(s, s′) ≤ 2 · n · ε

1− α− ε
.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 68 of 72

Go Back

Full Screen

Close

Quit

59. Proof from Part 4 (cont-d)

• Thus, if d(s, s′) > 2 · n · ε

1− α− ε
, then no tuples

(∆x1, . . . ,∆xn) can serve both sign tuples s and s′.

• In this case, the two sets of tuples ∆x do not intersect:

– tuples s.t. s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε);
– tuples s.t. s′1 ·∆x1 + . . .+ s′n ·∆xn ≥ n · δ · (1− ε).

• Let’s take take M sign tuples s(1), . . . , s(M) for which

d(s(i), s(j)) > 2 · ε

1− α− ε
for all i 6= j.

• Then the probability P that ∆x serves one of these
sign tuples is ≥M · p.

• Since P ≤ 1, we have p ≤ 1

M
; so:

– to prove that pn is exponentially decreasing,

– it is sufficient to find the sign tuples whose number
M is exponentially increasing.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 69 of 72

Go Back

Full Screen

Close

Quit

60. Proof from Part 4 (cont-d)

• Let us denote β
def
=

ε

1− α− ε
.

• Then, for each sign tuple s, the number t of all sign
tuples s′ for which d(s, s′) ≤ β · n is equal to the sum
of:

– the number of tuples

(
n

0

)
that differ from s in 0

places,

– the number of tuples

(
n

1

)
that differ from s in 1

place, . . . ,

– the number of tuples

(
n

β · n

)
that differ from s in

β · n places,

• Thus, t =

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n · β

)
.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 70 of 72

Go Back

Full Screen

Close

Quit

61. Proof from Part 4 (cont-d)

• When β < 0.5 and β · n < n

2
, the number of combina-

tions

(
n

k

)
increases with k, so t ≤ β · n ·

(
n

β · n

)
.

• Here,

(
a

b

)
=

a!

b! · (a− b)!
. Since n! ∼

(n
e

)n
, we have

t ≤ β · n ·
(

1

ββ · (1− β)1−β

)n
.

• Here, γ
def
=

1

ββ · (1− β)1−β = exp(S), where S
def
= −β ·

ln(β)− (1− β) · ln(1− β) is Shannon’s entropy.

• It is known that S attains its largest value when β =
0.5, in which case S = ln(2) and γ = exp(S) = 2.

• When β < 0.5, we have S < ln(2), thus, γ < 2, and
t ≤ β · n · γn for some γ < 2.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 71 of 72

Go Back

Full Screen

Close

Quit

62. Proof from Part 4 (cont-d)

• Let us now construct the desired collection of sign tu-
ples s(1), . . . , s(M).

– We start with some sign tuple s(1), e.g., s(1) =
(1, . . . , 1).

– Then, we dismiss t ≤ γn tuples which are ≤ β-close
to s, and select one of the remaining tuples as s(2).

– We then dismiss t ≤ γn tuples which are ≤ β-close
to s(2).

– Among the remaining tuples, we select the tuple
s(3), etc.

• Once we have selected M tuples, we have thus dis-
missed t ·M ≤ β · n · γn ·M sign tuples.

• So, as long as this number is smaller than the overall
number 2n of sign tuples, we can continue selecting.

Introduction

How to Get More . . .

How to Speed Up . . .

Towards a Better . . .

How General Can We . . .

Proofs

Home Page

Title Page

JJ II

J I

Page 72 of 72

Go Back

Full Screen

Close

Quit

63. Proof from Part 4 (conclusions)

• Our procedure ends when we have selected M tuples
for which β · n · γn ·M ≥ 2n.

• Thus, we have selected M ≥
(

2
γ

)n
· 1

β · n
tuples.

• So, we have indeed selected exponentially many tuples.

• Hence, pn ≤
1

M
≤ β · n ·

(γ
2

)n
, i.e.,

pn ≤ β · n · cn, where c
def
=
γ

2
< 1.

• So, the probability pn is indeed exponentially decreas-
ing. The main result is proven.

	I Introduction
	Need for Data Processing
	Need to Take Uncertainty Into Account When Processing Data
	Cases of Interval and Fuzzy Uncertainty
	Measurement and Estimation Inaccuracies Are Usually Small
	Case of Interval Uncertainty
	A Faster Method: Cauchy-Based Monte-Carlo
	Monte-Carlo: Successes and Limitations
	Fuzzy Case: A Problem
	Fuzzy Case: Reduction to Interval Computations
	Open Problems
	What We Do in This Thesis

	II How to Get More Accurate Estimates – by Properly Taking Model Inaccuracy into Account
	Linearization-Based Algorithm: Reminder
	Taking Model Inaccuracy into Account
	Resulting Algorithm
	How to Get Better Estimates: Idea
	How to Get a Better Estimate for y"0365y
	Let Us Use Y"0365Ynew When Estimating y
	Using Y"0365Ynew (cont-d)
	Resulting Algorithm
	A Similar Improvement Is Possible for the Cauchy Method
	Experimental Testing: Seismic Inverse Problem in Geophysics
	Case Study: Seismic Inverse Problem in the Geosciences
	Can We Further Improve the Accuracy?

	III How to Speed Up Computations – by Processing Different Types of Uncertainty Separately
	Cases for Which a Speed-Up Is Possible
	When a Speed-Up Is Possible (cont-d)
	A More General Case
	How This Case Is Processed Now
	Main Idea
	Resulting Algorithm
	The New Algorithm Is Much Faster
	Conclusions and Future Work

	IV Towards a Better Understandability of Uncertainty-Estimating Algorithms: Explaining the Need for Non-Realistic Monte-Carlo Simulations
	Formulation of the Problem: Reminder
	Proof: Case of Independent Variables
	General Case
	Why Cauchy Distribution: Formulation of the Problem
	Analysis of the Problem
	Analysis of the Problem (cont-d)
	Analysis of the Problem (cont-d)

	V How General Can We Go: What Is Computable and What Is Not
	Need to Take Uncertainty Into Account When Processing Data: Reminder
	We Often Have Imprecise Probabilities
	How Do We Describe Imprecise Probabilities?
	What Is Computable?
	Reminder: What Is Computable?
	Consequences for Representing a cdf F(x)
	Back to the Drawing Board
	Resulting Definition
	First Equivalent Definition
	Second Equivalent Definition
	What Can Be Computed: A Positive Result for the 1D Case
	Proof: Main Idea
	What to Do in a Multi-D Case?

	VI Conclusions and Future Work
	Conclusions
	Conclusions (cont-d)
	Conclusions (final)
	Future Work
	Acknowledgments

	VII Proofs
	Proof of the Main Result from Part 4
	Proof from Part 4 (cont-d)
	Proof from Part 4 (cont-d)
	Proof from Part 4 (cont-d)
	Proof from Part 4 (cont-d)
	Proof from Part 4 (cont-d)
	Proof from Part 4 (conclusions)

