

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 1

FAST ALGORITHM FOR FINDING

LATTICE SUBSPACES IN n

AND ITS IMPLEMENTATION

ANDREW M. POWNUK

THE UNIVERSITY OF TEXAS AT EL PASO

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 2

Goal and Objective

In the literature there are known algorithms with

exponential complexity that determine if a given

subspace is lattice-ordered.

In this presentation a polynomial time algorithm (serial

and parallel) as well as its computer implementation will

be presented.

The method can be applied in economics as well as in

the theory of vector lattices.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 3

Minimum-cost Portfolio Insurance

In economics it is possible to prove that the minimum-

cost insured portfolio exists if and only if the linear space

generated by the corresponding financial instruments is

lattice-ordered.

Theorem The minimum-cost insured portfolio exists and is price independent for

every portfolio and at every floor if and only if the asset span is a lattice subspace

of S . In this case, the minimum-cost insured portfolio k satisfies

   k k
M

X X k   .

Source: C.D. Aliprantis, D.J. Brown, and J. Werner, Minimum-cost portfolio insurance,

Journal of Economic Dynamics & Control, 2000, Vol. 24, pp. 1703-1719.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 4

The payoff of security n in S states is a vector S

n
x


 .

The payoffs
1
,...,

N
x x are assumed linearly independent.

For a portfolio  1
,..., N

N
    , its payoff is

 
1
n n

N

n

X x 


 .

The set of payoff of all portfolios is the linear span of

payoffs
1 2
, ,...,

N
x x x in the space S of all state contingent

claims and is the asset span .

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 5

A contingent claim is a marketed payoff if it lies in the

asset span   1 2
, ,...,

N
x xSpan x .

It is assumed that the risk-free payoff is marketed, so that

1 .

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 6

Let  1
,..., N

N
p p p  be a vector of security prices.

A non-zero portfolio  with positive payoff   0X   and

zero or negative value 0p   is an arbitrage portfolio.

A security price vector Np  is arbitrage-free if there is

no arbitrage portfolio, that is, if 0p   for all non-zero

portfolios  with   0X   .

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 7

Theorem

If 0p   for every arbitrage-free price vector p, then

  0X   .

Source: C.D. Aliprantis, D.J. Brown, and J. Werner, Minimum-cost portfolio insurance,

Journal of Economic Dynamics & Control, 2000, Vol. 24, pp. 1703-1719.

The insured payoff on a portfolio  at a “floor” is the

contingent claim  X   . This contingent claim may or

may not be marketed (element of).

The minimum cost insurance provides a payoff that

dominates the insured payoff at the minimum cost.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 8

Formally, the minimum-cost portfolio insurance is

defined by the following minimization problem:

   

min

. .

N
p

s t X X




 




 




where  X   is the insured payoff and k 1 (k is the

strike price).

This linear programming problem has a unique solution

as long as p is arbitrage-free. We denote the solution by
k and refer to it as the minimum-cost insured portfolio.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 9

Theorem The minimum-cost insured portfolio exists and is price independent for

every portfolio and at every floor if and only if the asset span is a lattice subspace

of S . In this case, the minimum-cost insured portfolio k satisfies

   k
M

X X k   .

Source: C.D. Aliprantis, D.J. Brown, and J. Werner, Minimum-cost portfolio insurance,

Journal of Economic Dynamics & Control, 2000, Vol. 24, pp. 1703-1719.

Theorem

(Abramovich-Aliprantis-Polyrakis, 1994). The asset span

 is a lattice-subspace of S if and only if there is a

fundamental set of states.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 10

Example

   1 2
1,1,1 , 0,1,2x x 

  
    

1

3

1 2

2

21

,

1,1,1 0,1 ,

dim 2

,2 :

Sp xan x

   



   



 1,1,1 1 then is a lattice-subspace.

1

2

1 1 1

0 1 2

x

x

   
   
     

 then
1 2 3

0 1 1
, ,

1 1 2
y y y

     
       
          

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 11

1

2

1 1 1

0 1 2

x

x

   
   
     

 then
1 2 3

0 1 1
, ,

1 1 2
y y y

     
       
          

1 1 11 1
1 0 22 2

     
      

          

 or
2,1 1 2 32 ,3

y y y  

Where
2,1 2,3

1 1
0, 0

2 2
    

and    1 2
dim , 2Span y y  then

1 3
,y y are

fundamental.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 12

Minimum portfolio insurance is a solution of the

following optimization problem

 

     
1 2

2 2 2
,

2

1 1

1

min 1
1,
21,1,1 0,1,2 1,1,2

p p
 

 

 



   
  

   

where insured payoff is    2
1,1,2X x    1 .

Then
1
1,
2

 
 
 

 is minimum-cost insured portfolio at every

arbitrage-free price p.

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 13

Theorem Suppose that there exists a fundamental set of

states F for the asset span . Then for every arbitrage-

free price system p and for every portfolio  and floor k,

the minimum-cost insured portfolio k is the unique

portfolio that replicates the insured payoff  X   in

the fundamental states. That is,

   k

F
X X  

The portfolio k is the solution to the equation

 k

F F
X X   , that is,    

1k

F F F
X X 


  
 

Minimum-cost Portfolio Insurance

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 14

In the example of two securities with payoffs
1
x  1 and

 2
0,1,2x  , the insured payoff on security 2 at “floor”

1k  is the contingent claim    2
1,1,2X x    1

and is not in the asset span. Since states
1
y and

3
y are

fundamental, the minimum-cost insurance on security
2
x

replicates the claim  1,1,2 in states 1 and 3. The portfolio

1
1,
2

 
 
 

 has payoff
1 2

1 3
1 1, ,2

2 2
x x

 
   

 
 and provides the

minimum-cost insurance at arbitrary arbitrage-free

prices.

Partially Ordered Sets

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 15

Partially ordered set is a pair  ,P  where P is a set and

 is a relation such that:

1) a a (reflexivity),

2) if a b and b a then a b (antisymmetry),

3) if a b and b c then a c (transitivity).

Example, A pair 22, is an example of the partial set

and for example        21,2 3,5 1 3 and 2 5   

Partially Ordered Sets

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 16

A lattice is a partially ordered set in which every two

elements have a least upper bound and also called a

greatest lower bound.

Example  {1,2,3}2 ,

Partially Ordered Sets

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 17

Generalized inequality

x y x y K   

       21,2 3,5 3 1 0 and 5 2 0     

(0,0)

Exponential Time Method for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 18

V.N. Katsikis, Computational methods in portfolio

insurance, Applied Mathematics and Computation, 189,

1, pp.9-22, 2007.

The algorithm requires
m

n

 
 
 
 

 steps, which grows

exponentially with m .

 222 2

2

nn n
en

 
  
  
 

Exponential Time Method for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 19

Definition

A set of n indices  1
,...,

n
m m is called a negative

fundamental set of indices for the vectors
1
,..., m

n
x x 

whenever the n vectors
1
,...,

nm m
y y are linearly

independent; and for at least one  1
,...,

n
mj m , all the

coefficients in the expansion
,

1
r

n

r
j j r m
y y



 are non-

positive.

Exponential Time Method for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 20

Definition

A solution  to the equation
1
i i

n

i

b x


 is called basic

nonnegative solution if for the set  : 0
i

L i   , the

set of vectors  :
i
y i L is linearly independent.

Exponential Time Method for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 21

Example

1 1 0 4 1

2 3 0 0 1

1 0 1 1 1

X

 
 

  
 
 

Fundamental set of indices.

0,2,3,4,0I     ,

1 0 4

3 0 0

0 1 1
I
Y

 
 

  
 
 

Lattice “YES”.

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 22

J.J. Del Valle, V. Kreinovich, and P.J. Wojciechowski,

Feasible algorithms for lattice and directed subspaces,

Mathematical Proceedings of the Royal Irish Academy,

Vol. 112A, No. 2, pp. 199-204, 2014.
GET_FUNDAMENTAL_INDEX(,mY)

{

INDEX:  1,...,m ;

:Z Y ;

for(: 1i  ; i m ;i  )

if NONNEGCOMB([],y i Z)

{  : \
i

Z Z y ;

INDEX : INDEX \ i ; }

return INDEX, PREFUND(Y ,INDEX);

}

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 23

Time of calculations

Calculations was done on Dell Precision 690 with two quad-core processors Intel Xeon X5365 and 16 GB memory and MATLAB Version 8.0.0.783

R2012b.

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 24

Computational Complexity of the Linear Programming

Problem

min

. .
0

Tc x

Ax b
s t
x

 




L.V. Kantorovich, A new method of solving some classes

of extremal problems, Doklady Akad Sci USSR, 28, 1940,

211-214.

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 25

G.B Dantzig, Maximization of a linear function of variables

subject to linear inequalities, 1947. Published pp. 339–

347 in T.C. Koopmans (ed.): Activity Analysis of

Production and Allocation, New York-London 1951 (Wiley

& Chapman-Hall).

http://upload.wikimedia.org/wikipedia/commons/e/ef/Simplex-description-en.svg

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 26

Interior Point Method

N. Karmarkar, A new polynomial time algorithm for linear

programming, Combinatorica, 4, 1984.

 4O n L - computational complexity

KKT conditions

()

() () 0 0

() 0 0

0 0 0

()

T T T

T T T

x x

T

x x

L c x Ax b y x y

f x h x y z c A y z A y z c

h x Ax b Ax b

XZe XZe XZe

f x c x c

   

            
  

       
    
  
   

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 27

Perturbed KKT conditions

() () 0

() 0

T

x x

k

f x h x y z

h x

XZe e

    



 


Vector form of the equations

() ()

() ()

(, ,)

k

T

x x

k

f x h x y z

F X h x

XZe e

X x y z





    
 

  
 
 



Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 28

Newton method for () 0
k
F X




1) For initial points
0 0
, nx z  ,

0

my R and
0
R 

2) For k=0,1,2,... until convergence

3) Newton step  ' ()
k k k

F X X F X
 

  

4) Update
1 kk k

X X X

  

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 29

Newton’s steps

 ' ()
k k k

F X X F X
 

  

 
 

2 2() () () () ()

() 0 0 ()

0

T
x n m n nn n x x

T

x n m m nn

kn n n m

x x

m

m n

f x h x y h x I x f x h x y z

h x y h x

z XYe eZ X 

 

 

  

              
           
         

 

Feasible Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 30

S. Mehrotra , On the Implementation of a Primal-Dual

Interior Point Method, SIAM Journal on Optimization,

Vol. 2, pp 575–601, 1992.

Y. Zhang, Solving Large-Scale Linear Programs by Interior-

Point Methods Under the MATLAB Environment,

Department of Mathematics and Statistics, University of

Maryland, Baltimore County, Baltimore, MD, Technical

Report TR96-01, July, 1995.

Parallel Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 31

http://upload.wikimedia.org/wikipedia/commons/d/d3/IBM_Blue_Gene_P_supercomputer.jpg

Parallel Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 32

Parallel Method

GET_FUNDAMENTAL_INDEX_PARALLEL(,mY)

{

INDEX:  
1

1,...,
m

m


;

:Z Y ;

while(NUMBER_OF_VECTORS_TO_BE_REMOVED(Z) > 0){

FIND_NONEGATIVE_VECTORS _PARALLEL(,INDEX Z);

REMOVE_NONEGATIVE_VECTOR(,INDEX Z);

}

return INDEX, PREFUND(Y ,INDEX);

}

Parallel Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 33

Example

1

1 0 0 0 0 0 0 0 0 0 1 3 6 10 15 21 28 36 45 55

0 2 0 0 0 0 0 0 0 0 2 4 10 18 28 40 54 70 88 108

0 0 3 0 0 0 0 0 0 0 3 9 9 21 36 54 75 99 126 156

0 0 0 4 0 0 0 0 0 0 4 12 24 16 36 60 88 120 156 196

0 0 0 0 5 0 0 0 0 0 5 15 30 50 25 55 90 130 175 225

0 0 0 0 0 6 0 0 0 0 6 18 36 60 90 36 78 126 180 240

0 0 0 0 0 0 7 0 0 0 7 21 42 7

X 

0 105 147 49 105 168 238

0 0 0 0 0 0 0 8 0 0 8 24 48 80 120 168 224 64 136 216

0 0 0 0 0 0 0 0 9 0 9 27 54 90 135 189 252 324 81 171

0 0 0 0 0 0 0 0 0 10 10 30 60 100 150 210 280 360 450 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

1 1 0 3 0 6 0 10 0 15 0 21 0 28 0 36 0 45 0 55

0 2 2 4 0 10 0 18 0 28 0 40 0 54 0 70 0 88 0 108

0 3 0 9 3 9 0 21 0 36 0 54 0 75 0 99 0 126 0 156

0 4 0 12 0 24 4 16 0 36 0 60 0 88 0 120 0 156 0 196

0 5 0 15 0 30 0 50 5 25 0 55 0 90 0 130 0 175 0 225

0 6 0 18 0 36 0 60 0 90 6 36 0 78 0 126 0 180 0 240

0 7 0 21 0 42 0 70 0 105 0

X 

147 7 49 0 105 0 168 0 238

0 8 0 24 0 48 0 80 0 120 0 168 0 224 8 64 0 136 0 216

0 9 0 27 0 54 0 90 0 135 0 189 0 252 0 324 9 81 0 171

0 10 0 30 0 60 0 100 0 150 0 210 0 280 0 360 0 450 10 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parallel Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 34

 Time of the calculations [s]

n Serial Method Parallel Method

10 0.75 1.8

50 1.7 5.2

100 10 16.4

150 43.2 48.8

200 140.6 126

250 340.2 298

300 750 647

350 1449 1287

Parallel Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 35

Example

1 0 0 0 0 0 0 0 0 0 1 3

0 2 0 0 0 0 0 0 0 0 2 4

0 0 3 0 0 0 0 0 0 0 3 9

0 0 0 4 0 0 0 0 0 0 4 12

0 0 0 0 5 0 0 0 0 0 5 15

0 0 0 0 0 6 0 0 0 0 6 18

0 0 0 0 0 0 7 0 0 0 7 21

0 0 0 0 0 0 0 8 0 0 8 24

0 0 0 0 0 0 0 0 9 0 9 27

0 0 0 0 0 0 0 0 0 10 10 30

X

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parallel Algorithm for Lattice Subspaces

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 36

Conclusions

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 37

Conclusions

Known method for verification if a given subspace is a

lattice ordered subspace of m can be applied for very

small computational problems (n<20).

Serial method has polynomial complexity and can be

effectively applied for large problems (n<500). In order to

solve larger problems it is necessary to apply parallel

computing.

Conclusions

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 38

In presented thesis theoretical background as well as

numerical results were presented. Parallel method can be

applied to the larger problems depending on available

hardware. Current implementation of the parallel

method is more effective than the serial method for

sufficiently big n. More optimized parallel code written

some HPC language (e.g. c/c++, FORTRAN) would be more

effective.

Conclusions

 Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n and its Implementation 39

Thank you

