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Goal and Objective 

In the literature there are known algorithms with 

exponential complexity that determine if a given 

subspace is lattice-ordered. 

In this presentation a polynomial time algorithm (serial 

and parallel) as well as its computer implementation will 

be presented. 

The method can be applied in economics as well as in 

the theory of vector lattices.
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Minimum-cost Portfolio Insurance 

In economics it is possible to prove that the minimum-

cost insured portfolio exists if and only if the linear space 

generated by the corresponding financial instruments is 

lattice-ordered. 

 

Theorem The minimum-cost insured portfolio exists and is price independent for 

every portfolio and at every floor if and only if the asset span is a lattice subspace 

of S . In this case, the minimum-cost insured portfolio k  satisfies

   k k
M

X X k   . 

Source: C.D. Aliprantis, D.J. Brown, and J. Werner, Minimum-cost portfolio insurance, 

Journal of Economic Dynamics & Control, 2000, Vol. 24, pp. 1703-1719.  
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The payoff of security n in S states is a vector S

n
x


 . 

The payoffs 
1
,...,

N
x x  are assumed linearly independent. 

For a portfolio  1
,..., N

N
    , its payoff is 

 
1
n n

N

n

X x 


 . 

The set of payoff of all portfolios is the linear span of 

payoffs 
1 2
, ,...,

N
x x x  in the space S  of all state contingent 

claims and is the asset span . 
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A contingent claim is a marketed payoff if it lies in the 

asset span   1 2
, ,...,

N
x xSpan x . 

It is assumed that the risk-free payoff is marketed, so that 

1 . 

  



Minimum-cost Portfolio Insurance 

 

 

                   Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n  and its Implementation                                              6 
 

Let  1
,..., N

N
p p p   be a vector of security prices. 

A non-zero portfolio   with positive payoff   0X    and 

zero or negative value 0p    is an arbitrage portfolio. 

A security price vector Np   is arbitrage-free if there is 

no arbitrage portfolio, that is, if 0p    for all non-zero 

portfolios   with   0X   . 
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Theorem 

If 0p    for every arbitrage-free price vector p, then 

  0X   . 

Source: C.D. Aliprantis, D.J. Brown, and J. Werner, Minimum-cost portfolio insurance, 

Journal of Economic Dynamics & Control, 2000, Vol. 24, pp. 1703-1719. 

The insured payoff on a portfolio   at a “floor”  is the 

contingent claim  X   . This contingent claim may or 

may not be marketed (element of ). 

The minimum cost insurance provides a payoff that 

dominates the insured payoff at the minimum cost. 



Minimum-cost Portfolio Insurance 

 

 

                   Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n  and its Implementation                                              8 
 

Formally, the minimum-cost portfolio insurance is 

defined by the following minimization problem: 

   

min

. .

N
p

s t X X




 




 



 

where  X    is the insured payoff and k 1 (k  is the 

strike price). 

This linear programming problem has a unique solution 

as long as p is arbitrage-free. We denote the solution by 
k  and refer to it as the minimum-cost insured portfolio. 
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Theorem The minimum-cost insured portfolio exists and is price independent for 

every portfolio and at every floor if and only if the asset span is a lattice subspace 

of S . In this case, the minimum-cost insured portfolio k  satisfies

   k
M

X X k   . 

 

Source: C.D. Aliprantis, D.J. Brown, and J. Werner, Minimum-cost portfolio insurance, 

Journal of Economic Dynamics & Control, 2000, Vol. 24, pp. 1703-1719. 

 

Theorem 

(Abramovich-Aliprantis-Polyrakis, 1994). The asset span 

 is a lattice-subspace of S  if and only if there is a 

fundamental set of states.  
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Example 

   1 2
1,1,1 , 0,1,2x x   

  
    

1

3

1 2

2

21

,

1,1,1 0,1 ,

dim 2

,2 :

Sp xan x

   



   



  

 1,1,1 1  then  is a lattice-subspace. 

1

2

1 1 1

0 1 2

x

x

   
   
     

 then 
1 2 3

0 1 1
, ,

1 1 2
y y y

     
       
          
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1

2

1 1 1

0 1 2

x

x

   
   
     

 then 
1 2 3

0 1 1
, ,

1 1 2
y y y

     
       
          

 

1 1 11 1
1 0 22 2

     
      

          

 or 
2,1 1 2 32 ,3

y y y    

Where 
2,1 2,3

1 1
0, 0

2 2
      

and    1 2
dim , 2Span y y   then 

1 3
,y y  are 

fundamental.  
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Minimum portfolio insurance is a solution of the 

following optimization problem 

 

     
1 2

2 2 2
,

2

1 1

1

min 1
1,
21,1,1 0,1,2 1,1,2

p p
 

 

 



   
  

   

 

where insured payoff is    2
1,1,2X x    1 . 

Then 
1
1,
2

 
 
 

 is minimum-cost insured portfolio at every 

arbitrage-free price p. 
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Theorem Suppose that there exists a fundamental set of 

states F  for the asset span . Then for every arbitrage-

free price system p  and for every portfolio   and floor k, 

the minimum-cost insured portfolio k  is the unique 

portfolio that replicates the insured payoff  X    in 

the fundamental states. That is, 

   k

F
X X    

The portfolio k  is the solution to the equation 

 k

F F
X X   , that is,    

1k

F F F
X X 


  
 

 



Minimum-cost Portfolio Insurance 

 

 

                   Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n  and its Implementation                                              14 
 

In the example of two securities with payoffs 
1
x  1  and 

 2
0,1,2x  , the insured payoff on security 2 at “floor” 

1k   is the contingent claim    2
1,1,2X x    1  

and is not in the asset span. Since states 
1
y  and 

3
y  are 

fundamental, the minimum-cost insurance on security 
2
x  

replicates the claim  1,1,2  in states 1 and 3. The portfolio 

1
1,
2

 
 
 

 has payoff 
1 2

1 3
1 1, ,2

2 2
x x

 
   

 
 and provides the 

minimum-cost insurance at arbitrary arbitrage-free 

prices.
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Partially ordered set is a pair  ,P   where P  is a set and 

 is a relation such that: 

1) a a  (reflexivity), 

2) if a b  and b a  then a b  (antisymmetry), 

3) if a b  and b c  then a c  (transitivity). 

 

Example, A pair 22,  is an example of the partial set 

and for example         21,2 3,5 1 3 and 2 5   
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A lattice is a partially ordered set in which every two 

elements have a least upper bound and also called a 

greatest lower bound. 

Example  {1,2,3}2 ,  

 



Partially Ordered Sets 
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Generalized inequality 

x y x y K     

     

       21,2 3,5 3 1 0 and 5 2 0       

 

 

(0,0) 
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V.N. Katsikis, Computational methods in portfolio 

insurance, Applied Mathematics and Computation, 189, 

1, pp.9-22, 2007. 

The algorithm requires 
m

n

 
 
 
 

 steps, which grows 

exponentially with m . 

 222 2

2

nn n
en

 
  
  
 

 

 



Exponential Time Method for Lattice Subspaces 

 

 

                   Andrew Pownuk, Fast Algorithm for Finding Lattice Subspaces in n  and its Implementation                                              19 
 

Definition 

A set of n  indices  1
,...,

n
m m  is called a negative 

fundamental set of indices for the vectors 
1
,..., m

n
x x   

whenever the n  vectors 
1
,...,

nm m
y y  are linearly 

independent; and for at least one  1
,...,

n
mj m , all the 

coefficients in the expansion 
,

1
r

n

r
j j r m
y y



  are non-

positive. 
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Definition 

A solution   to the equation 
1
i i

n

i

b x


  is called basic 

nonnegative solution if for the set  : 0
i

L i   , the 

set of vectors  :
i
y i L  is linearly independent. 
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Example 

1 1 0 4 1

2 3 0 0 1

1 0 1 1 1

X

 
 

  
 
 

 

Fundamental set of indices. 

0,2,3,4,0I     , 

1 0 4

3 0 0

0 1 1
I
Y

 
 

  
 
 

 

Lattice “YES”.
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J.J. Del Valle, V. Kreinovich, and P.J. Wojciechowski, 

Feasible algorithms for lattice and directed subspaces, 

Mathematical Proceedings of the Royal Irish Academy, 

Vol. 112A, No. 2, pp. 199-204, 2014. 
GET_FUNDAMENTAL_INDEX( ,mY ) 

{ 

INDEX:  1,...,m ; 

:Z Y ; 

for( : 1i  ; i m ;i   ) 

if NONNEGCOMB( [ ],y i Z ) 

{  : \
i

Z Z y ; 

INDEX :  INDEX \ i ; } 

return INDEX, PREFUND(Y ,INDEX); 

} 
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Time of calculations 

 
Calculations was done on Dell Precision 690 with two quad-core processors Intel Xeon X5365 and 16 GB memory and MATLAB Version 8.0.0.783 

R2012b. 
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Computational Complexity of the Linear Programming 

Problem 

min

. .
0

Tc x

Ax b
s t
x

 




 

L.V. Kantorovich, A new method of solving some classes 

of extremal problems, Doklady Akad Sci USSR, 28, 1940, 

211-214. 
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G.B Dantzig, Maximization of a linear function of variables 

subject to linear inequalities, 1947. Published pp. 339–

347 in T.C. Koopmans (ed.): Activity Analysis of 

Production and Allocation, New York-London 1951 (Wiley 

& Chapman-Hall). 

 

http://upload.wikimedia.org/wikipedia/commons/e/ef/Simplex-description-en.svg
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Interior Point Method 

N. Karmarkar, A new polynomial time algorithm for linear 

programming, Combinatorica, 4, 1984. 

 

 4O n L   - computational complexity 

KKT conditions 

( )

( ) ( ) 0 0

( ) 0 0

0 0 0

( )

T T T

T T T

x x

T

x x

L c x Ax b y x y

f x h x y z c A y z A y z c

h x Ax b Ax b

XZe XZe XZe

f x c x c

   

            
  

       
    
  
   
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Perturbed KKT conditions 

( ) ( ) 0

( ) 0

T

x x

k

f x h x y z

h x

XZe e

    



 


 

Vector form of the equations 

( ) ( )

( ) ( )

( , , )

k

T

x x

k

f x h x y z

F X h x

XZe e

X x y z





    
 

  
 
 


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Newton method for ( ) 0
k
F X


  

1) For initial points 
0 0
, nx z  , 

0

my R  and 
0
R   

2) For k=0,1,2,... until convergence 

3) Newton step  ' ( )
k k k

F X X F X
 

    

4) Update 
1 kk k

X X X

    
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Newton’s steps 

 ' ( )
k k k

F X X F X
 

    

 

 
 

2 2( ) ( ) ( ) ( ) ( )

( ) 0 0 ( )

0

T
x n m n nn n x x

T

x n m m nn

kn n n m

x x

m

m n

f x h x y h x I x f x h x y z

h x y h x

z XYe eZ X 

 

 

  

              
           
         

 
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S. Mehrotra , On the Implementation of a Primal-Dual 

Interior Point Method, SIAM Journal on Optimization, 

Vol. 2, pp 575–601, 1992. 

 

Y. Zhang, Solving Large-Scale Linear Programs by Interior-

Point Methods Under the MATLAB Environment, 

Department of Mathematics and Statistics, University of 

Maryland, Baltimore County, Baltimore, MD, Technical 

Report TR96-01, July, 1995.
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http://upload.wikimedia.org/wikipedia/commons/d/d3/IBM_Blue_Gene_P_supercomputer.jpg
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Parallel Method 

 

GET_FUNDAMENTAL_INDEX_PARALLEL( ,mY ) 

{ 

INDEX:  
1

1,...,
m

m


; 

:Z Y ; 

while( NUMBER_OF_VECTORS_TO_BE_REMOVED(Z ) > 0 ){ 

FIND_NONEGATIVE_VECTORS _PARALLEL( ,INDEX Z ); 

REMOVE_NONEGATIVE_VECTOR( ,INDEX Z ); 

} 

return INDEX, PREFUND(Y ,INDEX); 

} 
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Example 

1

1 0 0 0 0 0 0 0 0 0 1 3 6 10 15 21 28 36 45 55

0 2 0 0 0 0 0 0 0 0 2 4 10 18 28 40 54 70 88 108

0 0 3 0 0 0 0 0 0 0 3 9 9 21 36 54 75 99 126 156

0 0 0 4 0 0 0 0 0 0 4 12 24 16 36 60 88 120 156 196

0 0 0 0 5 0 0 0 0 0 5 15 30 50 25 55 90 130 175 225

0 0 0 0 0 6 0 0 0 0 6 18 36 60 90 36 78 126 180 240

0 0 0 0 0 0 7 0 0 0 7 21 42 7

X 

0 105 147 49 105 168 238

0 0 0 0 0 0 0 8 0 0 8 24 48 80 120 168 224 64 136 216

0 0 0 0 0 0 0 0 9 0 9 27 54 90 135 189 252 324 81 171

0 0 0 0 0 0 0 0 0 10 10 30 60 100 150 210 280 360 450 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

2

1 1 0 3 0 6 0 10 0 15 0 21 0 28 0 36 0 45 0 55

0 2 2 4 0 10 0 18 0 28 0 40 0 54 0 70 0 88 0 108

0 3 0 9 3 9 0 21 0 36 0 54 0 75 0 99 0 126 0 156

0 4 0 12 0 24 4 16 0 36 0 60 0 88 0 120 0 156 0 196

0 5 0 15 0 30 0 50 5 25 0 55 0 90 0 130 0 175 0 225

0 6 0 18 0 36 0 60 0 90 6 36 0 78 0 126 0 180 0 240

0 7 0 21 0 42 0 70 0 105 0

X 

147 7 49 0 105 0 168 0 238

0 8 0 24 0 48 0 80 0 120 0 168 0 224 8 64 0 136 0 216

0 9 0 27 0 54 0 90 0 135 0 189 0 252 0 324 9 81 0 171

0 10 0 30 0 60 0 100 0 150 0 210 0 280 0 360 0 450 10 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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 Time of the calculations [s] 

n Serial Method Parallel Method 

10 0.75 1.8 

50 1.7 5.2 

100 10 16.4 

150 43.2 48.8 

200 140.6 126 

250 340.2 298 

300 750 647 

350 1449 1287 
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Example 

1 0 0 0 0 0 0 0 0 0 1 3

0 2 0 0 0 0 0 0 0 0 2 4

0 0 3 0 0 0 0 0 0 0 3 9

0 0 0 4 0 0 0 0 0 0 4 12

0 0 0 0 5 0 0 0 0 0 5 15

0 0 0 0 0 6 0 0 0 0 6 18

0 0 0 0 0 0 7 0 0 0 7 21

0 0 0 0 0 0 0 8 0 0 8 24

0 0 0 0 0 0 0 0 9 0 9 27

0 0 0 0 0 0 0 0 0 10 10 30

X

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Conclusions 
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Conclusions 

Known method for verification if a given subspace is a 

lattice ordered subspace of m  can be applied for very 

small computational problems (n<20). 

Serial method has polynomial complexity and can be 

effectively applied for large problems (n<500). In order to 

solve larger problems it is necessary to apply parallel 

computing. 
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In presented thesis theoretical background as well as 

numerical results were presented. Parallel method can be 

applied to the larger problems depending on available 

hardware. Current implementation of the parallel 

method is more effective than the serial method for 

sufficiently big n. More optimized parallel code written 

some HPC language (e.g. c/c++, FORTRAN) would be more 

effective. 
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