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Abstract: In many engineering problems exact information about values of the parameters are not know exactly.
One of the simplest methods of modeling uncertainty is based on the interval parameters. In order to check the
safety of the structure with the interval parameters it is necessary to calculate the interval limit state function. In
this paper efficient methods of calculating interval von Mises stress and displacements is presented. The concept
of uncertain limit stated was applied in the designing process.
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1 Interval parameters in structural
mechanics

In engineering, very often, it is not possible to get pre-
cise information about the values of the parameters of
the structure [1]. Material parameters, for example
Young’s modulus, Poisson’s ration very often are not
known exactly because of the lack of detail informa-
tion about the technology which was involved in the
production of the parts of the structures. This is par-
ticularly important in the complicated composite ma-
terials, geomechanics and wood structures. It is really
hard to predict exact values of real world loads, which
act on each particular structure. Geometrical parame-
ters like height and thickness are also sometimes dif-
ficult to estimate. In such situations it is hard to to
get reliable probabilistic characteristics of the struc-
ture because it is better to apply imprecise probability
[2]. In the simplest case it is possible to apply interval
parameters. In order to define the interval parameterp
it is necessary to know onlyupperp and lower bound
p of the parameterp.

p ∈ [p, p] = p (1)

Engineering structures usually are described by the
system of parameter dependent PDE.

A(x, p)u = b(x, p) (2)

Solution set of the equation (2) can be defined in the
following way.

u(x,p) = ♦{u : A(x, p)u = b(x, p), p ∈ p} (3)

whereu(x,p) is the smallest interval which contain
the exact solution setu(x,p) [3]. Exact solution of

the system of partial differential equations is very dif-
ficult to obtain. In practice, it is necessary to replace
the system of PDE (2) by the system of parameter de-
pendent algebraic equations. Interval solution can be
defined in the following way

u(p) = ♦{u(p) : K(p)u = Q(p), p ∈ p} (4)

whereK is the stiffness matrix,Q is the load vector
andu contain vector of displacements.
One of the simplest methods for the estimation of
the solution setu(p) is the endpoint combination
method [3]. Unfortunately, due to high computational
complexity, it is not possible to apply it in engineer-
ing practice. However, there are very interesting
engineering applications that use this approach [4].
Using this approach it is possible to solve nonlinear
elastic-plastic problems [6] as well as composite
structures [5].
Another very efficient method is based on the re-
sponse surface method [7, 8, 9, 10]. In this approach
the solutionu = u(p) is approximated by some
surfaceu(p) ≈ uapprox(p) then all the claculations
are based on the functionuapprox(p) which is much
simpler than original solutions.
A very important group of methods is based on
Rump’s theorem [11]. Using Rump’s theorem it is
possible to get the results with guaranteed accuracy.
In 2001, Muhanna and Mullen published a funda-
mental paper in that area [12]. The method uses
element by element formulation of FEM equations
which significantly reduce overestimation of the
results. Later, the method was successfully applied
and improved by Rama Rao [13]. Popova and Skalna
independently applied Rump’s theorem in order to



investigate systems of equations with the matrices in
which coefficients depend linearly on the uncertain
parameters [15, 14, 16]. The method was applied in
order to analyse truss and frame structures. Zhang
applied Rump’s method to the 2D problems [17].
A very interesting interval finite element method
for truss and frame structures was proposed by
Neumaier [18]. The method uses special decompo-
sition of the stiffness matrix matrices of the system
(K = AT ∙ D ∙ A). The method is very efficient and
produces results (displacements) with high accuracy.

2 Modified Gradient Method
From a mathematical point of view the problem of so-
lution of the system of equations with the interval pa-
rameters is actually an optimization problem.

ui =






min ui
K(p)u = Q(p)
p ∈ p

, (5)

ui =






max ui
K(p)u = Q(p)
p ∈ p

(6)

There are many optimization methods [19], which can
be applied in order to solve the optimization problems
(5). One of the simplest is the gradient method. Using
this method in order to find a minimum of the func-
tion ui = ui(p) it is necessary to search the solution
space in the direction of the gradient. For monotone
functionsui = ui(p) the maximum and the minimum
can be found by using one iteration step.

If
∂ui

∂pj
0 then pmin,ij = p

j
, p
max,i
j = pj , (7)

If
∂ui

∂pj
< 0 then pmin,ij = pj , p

max,i
j = p

j
, (8)

ui = ui(p
min,i), ui = ui(p

max,i). (9)

Extreme values of the function can be calculated by
using points from the following list

L = {pmin,1, pmin,2, .., pmax,m} (10)

Very often some points appear in the listL multiple
times. It is possible to create a list of unique points
L∗.

L∗ = {p∗1, p∗2, ..., p∗n} (11)

In order to get the extreme value of the solution it is
enough to find the solution in the points form the list
L∗.

ui = min{u(p
∗) : p∗ ∈ L∗}, (12)

ui = max{u(p
∗) : p∗ ∈ L∗} (13)

Formulas (13) can be applied also in the case when
the functionui = ui(p) is not monotone. In that
case the pointspmin,i or pmax,i are not combinations
of endpoints or the intervalp and can be calculated
by using general optimization methods. According to
many numerical results [21, 20], in engineering prob-
lems the method gives exact results or the accuracy
is very good. The method is able to solve large scale
engineering problems [21]. Using the presented ap-
proach it is also possible to solve nonlinear problems
of computational mechanics as well as dynamic prob-
lems [23]. It is also possible to write general purpose
interval FEM software which is based on the gradient
method [24]. If the function is not monotone then it is
possible to use general optimization methods.
Appropriate derivatives can be calculated by using di-
rect implicit differentiation. For parameter dependent
system of equationK(p)u = Q(p) derivativedudp sat-
isfy the following system of equation

K
du

dp
=
dQ

dp
−
dK

dp
u (14)

In order to get derivativedudp it is also possible to apply
adjoint variable method.

3 Numerical example

Let us consider 2D elasticity problem which is shown
on the Fig. 1. In calculations, 64 rectangular elements

Figure 1: 2D elastic structure

were applied [25]. Example intervalux component
of displacement was shown on the Fig. 2. Numerical
data are the following. Numerical data are the fol-
lowing parameter Young modulusE ∈[2.0475∙1012,
2.1525∙1012] [Pa], thicknessh = 0.1 [m], Poisson
numberν = 0.2, point loadP ∈ [−1025,−975] [N],
width 1 [m], height 1 [m]. The problem contains 74
interval parameters. The time of calculations was 72
second on Dell Precision 690 with 3 GHz processor.



Figure 2: Interval displacement for 5% uncertainty

4 Design of Structures with the In-
terval Parameters

This method allows for the efficient calculations of the
interval von Mises stress for different level of uncer-
tainty. These results can be directly applied in the de-
sign process. Numerical results are shown below. The
dark red area is the potential failure region. The max-

Figure 3: Maximum von Mises for 5% uncertainty

Figure 4: Maximum von Mises for 30% uncertainty

imum von Mises stress is bigger if the uncertainty is
bigger. Failure regions are larger if the uncertainty
grows. The method generates not only extreme val-
ues of the results (e.g. displacements, stress etc.) but

Figure 5: Maximum von Mises for 50% uncertainty

it is also possible to get a combination of parameters
which generate each bound of the solution and verify
the results using existing engineering software. Ex-
ample structure in ANSYS is shown on the Fig. 1.
Von Mises stress in ANSYS for one combination of
parameters is shown on the Fig. 6.

Figure 6: Verification of the results in ANSYS (von
Mises stress)

The interval results are symmetric because this is
envelop of all possible solutions. The results from
ANSYS are not symmetric because they correspond
to one specific combination of parameters.

5 Accuracy of the Calculations

In order to investigate the accuracy of the calculations
it is possible to compare the results of the gradient
method with the search methods. In this approach
each interval parameterp is replaced by a set of grid
pointsp ∈ {p1, ..., pk}. Extreme values of the solu-
tion can be calculated by comparing all possible com-
binations of of the solutions.

ui = min{u(p
∗) : p∗ ∈ {p1, ..., pk}}, (15)

ui = max{u(p
∗) : p∗ ∈ {p1, ..., pk}} (16)



For 4 element problem with2% uncertainty, only one
bound of the displacement was not calculated exactly
and the error of calculation for that one displacement
is 0.4%. According to the results of the search
method, extreme values of the solution are functions
of the endpoints of the intervals, which support the
assumption about monotonicity of the solution as a
function of the interval parameters.
The method generates not only solution but also
appropriate combinations of parameters. Then we
can calculate the results using different methods and
compare the accuracy.
Let’s assume that parameters 1-4 are Young’s modu-
lus and 5-7 are point loads. Example, combination of
parameters, which correspond to the lower bound of
the displacements are shown in the Table below.

Table 1, Combinations of the parameters which
correspond to lower and upperbounds

u5 u5
0,1,1,0,0,1,1 1,0,0,1,1,0,0
u6 u6

0,0,1,1,0,0,0 1,1,0,0,1,1,1
u7 u7

0,1,0,0,0,0,1 1,0,1,1,1,1,0
u8 u8

0,1,0,0,0,0,1 1,0,1,1,1,1,0
u11 u11

0,1,0,0,0,0,1 1,0,1,1,1,1,0
u12 u12

0,1,0,0,0,0,1 1,0,1,1,1,1,0

In Table 1, 0 is a code for lower bound, 1 is a
code for upper bound, so for exampleu5 correspond
to 0,1,1,0,0,1,1 which means

u5 = u5(E1, E2, E3, E4, P 1, P 2, P 3) (17)

whereE1 is the lower bound of Young’s modulusE1,
E2 is the upper bound of Young’s modulusE2 etc.
From numerical results we see that the lower bound
depend on theEi (lower bound) then the upper bound
dependonEi (upper bounds). So extreme values of
the solution depends on the opposite endpoints of the
given intervals. That is one more indicator that the
relationui = ui(p) is very offten monotone.

6 Conclusions

Using gradient modified gradient method which was
presented in this paper it is possible to efficiently de-
sign 2D structures with the interval parameters. The
method works for linear and non-linear problems of

computational mechanics (however at this moment
the method is implemented only for linear problems).
The method gives reliable inner bound of the exact
solution set. According to some numerical results
the methods is exact for simple 2D problems [20].
The accuracy for more complicated problems is very
good. However, it is possible to find examples [20] in
which the method produces not very accurate results
for some component of the solution. In order to detect
problems with monotonicity of the solution higher or-
der, monotonicity test can be applied [21].
The method produces not only extreme values of the
displacements and stress but also appropriate combi-
nations of parameters which can be used in order to
verify the results by using the existing engineering
software. The software allows to export models which
correspond to given combination of parameters to
ANSYS. Example software can be downloaded from
the following web page http://andrzej pownuk.com.
The method also allows to study different kinds of de-
pendency between different kind of uncertain param-
eters. In presented example, the maximum von Mises
stress are the same for dependent and independent
Young Modulus. However, the uncertainty is much
bigger in the case of independent Young’s modulus.
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