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The problem of optimal design consists in finding the optimum parameters according to a specified 
optimality criterion. Existing optimization methods [25, 27] usually are not reliable or cannot use the 
nondifferentiable, not continuous objective functions or constraints. An interval global optimization method 
is very stable and robust, universally applicable and fully reliable. The interval algorithm guarantees that all 
stationary global solutions have been found. In this paper the algorithm is applied to optimization of 
mechanical systems, calculation of extreme values of mechanical quantities and to optimization of structures 
with uncertain parameters. 

 
 
 
 

1. INTRODUCTION 

Algorithms for solving global optimization problems can be classified into heuristic methods that 
find the global optimum only with high probability, and methods that guarantee to find a global 
optimum with some accuracy. An important class belonging to the former type are the stochastic 
methods [25]. A number of techniques such as simulated annealing [25] and genetic algorithms [16] 
use analogies to physics and biology to approach the global optimum. The most important class of 
methods of the second type are branch and bound methods [11]. They originate from combinatorial 
optimization, where global optima are also wanted but the variables are discrete and take several 
values only. Branch and bound methods guarantee to find a global optimum with a desired accuracy 
after a predictable (though often exponential) number of steps. The basic idea is that the configuration 
space is split repeatedly by branching into smaller and smaller parts. This is not done homogenously, 
but instead some parts are preferred and others are eliminated. The details depend on bounding 
procedures. Lower bounds on the objective allow to eliminate large portions of the configuration 
space early in the computation so that only a (usually small) part of the branching tree has to be 
generated and processed. The lower bounds may be obtained using dc-method [25], techniques of the 
interval analysis [10, 23], or methods based on the knowledge of Lipshitz constants [19]. In many 
mechanical and civil engineering optimization problems, sensitivity and gradient methods are applied 
[2, 8, 15, 26]. If an objective function and constraints are differentiable, Kuhn-Tucker conditions can 
be applied [6]. Many information about optimization methods is available on the Internet [27, 28]. 

In this paper, applications of the interval global optimization method [10, 23] to the optimization 
problems in applied mechanics are considered. This method can also be applied to the following 
engineering problems: 

optimization of parameters of mechanical system [8]; 
shape optimization [21]; 
calculation of extreme values of mechanical system [20]; 
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2. INTERVAL ANALYSIS 

2.1 INTERVAL ARITHMETIC 

A real interval is a set of real numbers such that: 

 [ ] [ ] { }+−+− ≤≤∈== xxxx, xxx :R  (1) 

The set of all intervals is denoted by IR [1] and called a real interval space. Operations and functions 
on real numbers are naturally extended to interval operands according to the general formula [1, 18] 

 [ ] [ ] [ ] [ ]{ }yy,xx :yxyx ∈∈⊕=⊕ ,   where:   { }/,,+, ⋅−∈⊕ , (2) 

 [ ] [ ]( ) ( ) [ ] [ ]{ }nxxxxxxfxxf ∈∈= n11n121 , ... ,:,...,,..., . (3) 
Multidimensional intervals can be defined in the following way: 
 [ ] [ ] [ ] [ ] n

nn IRx,x...x,xx,x ∈×××= +−+−+−
2211x . (4) 

We call a function f programmable if f can be built up from arithmetic, logical and comparison 
operators and some collection of standard transcendental functions (like sin, cos, power, etc.). 
Particularly, taking an argument x, the function value f(x), can be calculated with a finite number of 
operations [9]. All the functions dealt with in this paper are assumed to be programmable. 

Another important property of arithmetic operations on intervals is called inclusion isotonicity: 
 [ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ] [ ]dcbadbca ⊕⊆⊕⇒⊆∧⊆  (5) 
that is the result of straightforward calculation of interval expression will always include the proper 
result ( ⊕  is any interval arithmetic operation). 

A function IRIRF →:  which satisfies 
 ( ) [ ]{ } [ ]( )xFxxxf ⊆∈:    for all [ ] IRx ∈  (6) 
will be called an inclusion function for f over [ ]x . 

Let [ ] IRx ∈ ; then the natural interval extension [ ]( )xf̂  of the programmable function f to [ ]x  is 
defined as that expression which is obtained from the expression f(x) by replacing each occurrence of 
the variable x by the interval [ ]x , the arithmetic operations of IR by the corresponding interval 
arithmetic operations, and each occurrence of pre-declared function g by the corresponding inclusion 
function [9, 17]. It follows from the inclusion isotonicity of interval arithmetic [1, 17] operations that: 
 [ ]xx ∈  implies ( ) [ ]( )xf̂xf ∈ . (7) 
Property (7) is the key to almost all interval arithmetic applications and results and (7) is called the 
fundamental property of interval arithmetic [23]. 

For any bounded set of real numbers S we can define the smallest interval enclosure of the set [14] 
 [ ] S sup S,inf= Shull  (8) 

2.2 SYSTEMS OF LINEAR INTERVAL EQUATIONS 

Let us consider a linear interval system of equations with an interval coefficient matrix [ ] nnIR ×∈A  
and an interval right-hand vector [ ] nIR∈B  [18]: 
 [ ] [ ]BXA =  (9) 
The solution set of eq. (9) is defined as [18]: 
 [ ] [ ]( ) [ ] [ ]{ }BXABBAAXBA =⋅∈∃∈∃∈=∑  , , :R, n  (10) 
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2.3 INTERVAL NEWTON METHOD 

Consider a system of nonlinear equations in the form g(x)=0, where [ ] nRR →⊃ x:g n . We define 
an iterative algorithm in the form [10]: 

 [ ]( ) [ ]( ) ( )∑ 






 −
∂

∂= kxg
x

xxgxxN ,,ˆ
hull,ˆ kk

kk  (11) 

 [ ] [ ]( )kkkk ,ˆ xxNxx +=+1 , where [ ]kk xx ∈  (12) 

for k=0,1,...; ( [ ]0x  is a given initial interval and [ ]( )
x

xxg
∂

∂ kk ,ˆ
 is a special interval extension of Jacobi 

matrix [10]). For example, in two dimensional cases the Jacobi matrix can be written as 
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Using the interval Newton method all solutions of a system of nonlinear equations g(x)=0 in a given 
initial interval [ ]0x  can be found [1, 10, 18]. 

3. BASIC ALGORITHM OF INTERVAL GLOBAL OPTIMIZATION 

The interval global optimization method is based on the fundamental property of interval 
arithmetic (7). If the following inequality holds: 

 [ ]( ) [ ]( )−+ < 21 xx f̂f̂  (14) 

where [ ]( ) [ ]( ) [ ]( )xxx f̂hullf̂,f̂  ] [ =+− , [ ] [ ] nIR, ∈21 xx , [ ] RR:f →⊃ xn , then the global minimum 
does not lie in the interval [ ]2x , and hence [ ]2x  can be omitted in future calculations. For example, let 

( ) 2
2

2
1 xxf +=x  and [ ] [ ] [ ]1 0,1 0,1 ×=x  and [ ] [ ] [ ]3 2,3 2,2 ×=x , then [ ]( ) [ ]2 0,1 =xf̂ , [ ]( ) [ ]18 8,2 =xf̂ . 

Because [ ]( ) [ ]( )−+ < 21 xx f̂f̂  then from the fundamental property of interval arithmetic, it follows that 
 [ ] [ ] ( ) ( )xfxf xx IKIK <∈∀∈∀ 21 xx , (15) 
hence the global minimum of the function f does not lie in the interval [ ]2x  and [ ]2x  can be omitted in 
future calculations. 
Let [ ] nIR∈x  be an initial interval. The basic algorithm is as follows [4, 10, 23]: 

Step 0 Set [ ] [ ]xy =  and [ ]( )−= xf̂y  . Initialize the list L and the cut-off level [ ]( )+= xf̂z . 
Step 1 Choose a coordinate direction { }n,...,,k 21∈ . 
Step 2 Bisect y in direction k: [ ] [ ] [ ]21 vvy ∪= . 
Step 3 Calculate [ ]( )1vf̂  and [ ]( )2vf̂  and set [ ]( )−= ii f̂ vv  for i=1,2 and 

[ ]( ) [ ]( ){ }++= 21     z,minz vv f̂,f̂ . 
Step 4 Remove ( [ ]y , y) from the list L. 
Step 5 Cutoff test: discard the pair [ ]( )ii v ,v  if zv >i  (where i=1, 2). 
Step 6 Add any remaining pair(s) to the list L. If the list becomes empty then STOP. 
Step 7 Denote the pair with the smallest second element by [ ]( )y,y . 
Step 8 If the width of [ ]( )yf̂  is less than ε, then print [ ]( )yf̂  and [ ]y , STOP. 
Step 9 Go to step 1. 
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4. ACCELERATION DEVICES - TECHNIQUES FOR SPEEDING UP THE COMPUTATION 

In order to improve the quality of the interval global optimization algorithm, several special 
procedures should be applied. 

Monotonicity test - if 

 [ ]( )
jx

f̂
∂

∂∉ x0  for some { }n,...,j 1∈  (16) 

then there is no stationary point of f in [ ]x . In particular, [ ]x  cannot contain the global minimum. 
Midpoint test - if the following inequality holds (compare [14]) 

 ( ) [ ]( )−+ < 2xx f̂f̂ , where [ ]1xx ∈  (17) 
then global minimum cannot be in the interval [ ]2x . 

Finding a function value as small as possible - midpoint test gives better results if the number 
( )xf  is as small as possible. Minimum of the function f in [ ]1x  can be found using any local 

optimization method. 
The interval Newton method - the interval Newton method (see 2.3) is applied to [ ]x  to 

determine existence or uniqueness of a zero of the gradient of the function f. 
Use a good inclusion function - in a calculation it is better to use an inclusion function rather than 

the natural interval extension [1, 22]. 
A nonconvexity check - if the function f has unconstrained minimum at *x , then f must be convex 

in some neighborhood of *x . Hence, the Hessian H of f must be positive semidefinite at *x . A 
necessary condition for this is that the diagonal elements iiH  (i=1,..., n) be nonnegative. Consider an 

interval [ ]x . If [ ]( ) 0<+xiiĤ  for some i = 1,..., n then ( ) 0<xiiH  for all [ ]xx ∈ . Hence, H cannot be 
positive semidefinitive for any point in [ ]x . Therefore, f cannot have a stationary minimum in [ ]x  and 
[ ]x  can be deleted [10]. 

Recursive (automatic) differentiation - using automatic differentiation we can calculate 
derivatives of very complicated functions [18]. 

The Fritz-John conditions - this procedure is very similar to Kuhn-Tucker conditions [6] and we 
use them in constrained global optimization problems. 

Use of constraints - using fundamental property of interval arithmetic (7) we can verify if in a 
given interval [ ]x  exist any points that satisfy all constraints [10]. 

5. APPLICATIONS OF INTERVAL GLOBAL OPTIMIZATION 

The MacNeal-Schwendler company applies interval global optimization to design rocket nozzles 
[3, 8]. Sun Microsystems developed software and applications for interval techniques for global 
solutions of non-linear systems and optimization [5]. There are many applications of interval methods 
in economy (Bank One [24], Swiss National Bank [3]). GE Medical System uses interval methods to 
control NMR signal and „black-box” optimization [7]. Delisoft Ltd. commercialises and sells interval 
global optimization software [12]. 

6. OPTIMIZATION OF MECHNICAL SYSTEM USING INTERVAL GLOBAL OPTIMIZATION 

Interval global optimization method can be applied to unconstrained and constrained optimization 
problems of the following types: 
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where [ ] nIR∈x . We can apply this algorithm to engineering problems which have the form (18). 
Because the interval global optimization method is usually NP-hard [13] the dimensionality of the 
problem (18) should be sufficiently low. 

6.1 SHAPE OPTIMIZATION OF A TRUSS 

Consider a problem of shape optimization of a truss structure shown in Fig. 1. The objective 
function will be the volume (weight) of the truss i.e. 

 ( ) ∑∑
==

⋅=⋅=
4

1i
ii

0

4

1
ii

1 LN
σ

LAf
i

x  (19) 

wx

wy

P
L

L2

2 3

4

1

 
Fig.1 Optimal shape of a truss 

 
where ( )4321ww N,N,N,N,y,x=x  , iN  are axial forces, iA  are areas of cross sections, iL  are lengths 
of the rods and 0σ  is an allowable stress. This is a global optimization problem in the following form: 

 
( )

( )
[ ]








∈
=

xx
0xEq

xfmin 
 (20) 

where Eq(x)=0 is a system of equilibrium equations (Eq is a nonlinear function of x) [21]. After 
solving equilibrium equations we can transform constrained global optimization problem (20) into 
unconstrained global optimization problem in the form: 
 ( )ww y,xf min    where   [ ] [ ]0w0w  ww yy,xx ∈∈  (21) 
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The objective function (21) is nondifferentiable and we cannot use traditional optimization algorithms 
[2]. In calculation, we assume that L=1 [m], 0σ =190 [MPa], P=10 [kN], [ ] [ ] [m]  2 00 ,xw = , 
[ ] [ ] [m]  1  00 ,yw = . Numerical results are shown in table 1. 
 
Table 1 Optimal characteristics of the truss structure 

wx  [m] (the best point solution) 1.19 

[ ]wx  [m] (the interval solution) [1.124272, 1.218754] 

wy  [m] (the best point solution) 0.22 

[ ]wy  [m] (the interval solution) [0.183575, 0.245975] 

1A  [ ]m2  5.4 ⋅ −10 5  

2A  [ ]m2  6.01 ⋅ −10 5  

3A  [ ]m2  0.6 ⋅ −10 5  

4A  [ ]m2  1.0 ⋅ −10 4  

Optimal volume *f  [ ]m3  4.102 ⋅ −10 4  

The point solutions were calculated in each iteration of the interval algorithm (using the midpoints of  
appropriate intervals). The best point solution is presented in table 1. Calculation was carried out the 
by a program written in C++ language. Overloaded operators were used in programming interval 
arithmetic operations (2). 

7. CONCLUSIONS 

The preceding numerical results indicate that the presented algorithm is an effective and efficient 
method of global optimization. However, it will probably be quite slow if many local minima have 
values of f differing very little from the global value. The algorithm guarantees that all stationary 
global solutions (in the initial interval) have been found. The bounds on the solution(s) are guaranteed 
to be correct. Error from all sources are accounted for. Algorithm will be faster when interval 
arithmetic is available in hardware [10]. The algorithm can solve the global optimization problem also 
when the objective function is nondifferentiable or even not continuous. 
 
This work was supported by the grant No. 8T11F00615 (for the year 1999) from the Committee of 
Scientific Research (KBN). 
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